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PREFACE

This book tells the story of four summer days in Shrivenham in 1988, when 88 people
came to the Second International Conference on Algorithms for Approximation at the
Royal Military College of Science (RMCS) from July 12th to 15th, Of course the book
only tells part of the story. It cannot easily convey the good humour and very happy
atmosphere that prevailed, and it does not catalogue the many friendships that were made,
the excellent meals and refreshments that were enjoyed, and the plethora of social
activities that took place.

The conference was organised for two main reasons. Firstly, there were many requests
for a Second Shrivenham Conference from those who attended the First in 198S.
Secondly, it had clearly been established at the First Conference that there was a demand
and need for a regular meeting which emphasised the aigorithmic aspects and applications
of approximation. There was also a continuing need for more conferences in the UK in

the general area of approximation.

The meeting itself was run under the auspices of Cranfield Institute of Technology, of
which RMCS is a faculty, and financial support was gratefully received from the US Office
of Aerospace Research and Development. The organising committee was Maurice Cox
(NPL) and Anne Daman and John Mason (RMCS), and the RMCS local organisers were
very ably assisted by Elizabeth Smith and Pamela Moore. It was a loss to RMCS and to
the conference organisation when Anne Daman left early in 1988 to seek her fortune in
the USA, but there were celebrations when she returned in July as Mrs Anne Trefethen
to receive her PhD degree and attend the conference with her husband.

The ten invited speakers, chosen by the organising committee, covered a broad spectrum
of topics and came from a wide range of countries. All of their papers appear in these
proceedings. The UK speakers were Dr John Gregory (Brunel), Professor John Mason
(RMCS), Professor Michael Powell (Cambridge) and Professor Alastair Watson (Dundee).
Also from Europe came Professor Wolfgang Dahmen (Berlin) and Professor Tom Lyche
(Oslo). The speakers from the USA were Dr Eric Grosse (Bell Labs), Professor
Larry Schumaker (then Texas A and M, now Vanderbilt) and Professor Lloyd Trefethen
(MIT). Finally from Canada came the opening speaker, Professor Ian Barrodale
(Barrodale Associates, Victoria), who set the tone of all the invited talks with a paper of
excellent content and very entertaining delivery. It is also appropriate at this point to
mention Dr James Lyness (Argonne), who as guest speaker at the conference dinner,
added further academic distinction and good humour to the occasion.




The remainder of the conference programme was made up of submitted papers, of which
forty were selected for two parallel sessions. Within this book you will find the
thirty—three of these papers which were finally offered and accepted for publication after a
refereeing procedure. There was general agreement on the high standard of the
conference talks, and we believe that this is reflected in the overall quality of the
published papers.

It will be noted that the last paper in the book, by Eric Grosse, is a substantial catalogue
of algorithms for approximation, and we believe that this will prove to be a very useful
and popular reference. Moreover we should not be suprised to see this becoming the
catalyst for a series of such offerings. Unlike the proceedings of the first conference, the
present volume does not include a “software panel”. However, this is more than
compensated for by the inclusion of the above-mentioned catalogue and the separate
publication (by Chapman and Hall) of a volume of proceedings of a Symposium on
*Scientific Software Systems™, held at RMCS on the day before the conference (July llth).
The latter volume of seventeen papers covers the broad area of numerical software, as
well as a wide range of software and hardware requirements. It includes, amongst many
contributions which might interest current readers, two papers with immediate application
to approximation, viz "Linear algebra support modules for approximation and other
software” by M G Cox and "An advisory expert system for curve and surface fitting® by
Anne E Trefethen.

The forty-one papers in the present volume have been arranged into three primary
sections: 1 Development of Algorithms, I Applications, and III Catalogue of Algorithms.
The first two sections have been subdivided into eight groups: 1. Spline approximation,
2. Polynomial and piecewise polynomial approximation, 3. Interpolation, 4. Smoothing and
constraint methods, 5. Complex approximation, 6. Computer—aided design and geometric

modelling, 7. Applications in numerical analysis, and 8. Applications in other disciplines.

Such a division into sections, while giving the book a useful structure, is somewhat
arbitrary, and we apologise to any authors who may feel that their work has been
incorrectly categorised. Several papers could have been placed in up to three groups
(especially spline approximation, piecewise polynomial approximation, and computer—aided
design). Moreover the CAD group, which we have placed in the Applications section
could perfectly well have been placed in Section 1. Although there is no group headed
"nonlinear approximation”, there are several nonlinear algorithms (in Section II in
particular), and of course the complex algorithms (in group 5 and elsewhere) could have
come under this heading.

We must conclude with some essential but broad expressions of our gratitude. Firstly, we
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thank the multitude of staff at Royal Military College of Science, National Physical
Laboratory, US Air Force European Office of Aerospace Research, and Chapman and Hall
(publishers) who contributed in so many different ways to make the conference a great
success and to print the abstracts and proceedings. Secondly, we thank all the speakers
and authors of invited and contributed papers, without whose industry and patience this

volume would not have existed.

As soon as conference number Il was over, we were tempted to start thinking in terms of
a conference series. We certainly intend that there should be further conferences on
"Algorithms for Approximation", since the first two generated so much good research and

goodwill. All that we need are energy, time and resources and, of course, your support.

John Mason Maurice Cox

Shrivenham Teddington

May 1989
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1. Spline Approximation




CONSTRAINED SPLINE APPROXIMATION OF FUNCTIONS AND DATA
BASED ON CONSTRAINED KNOT REMOVAL

ERLEND ARGE, MORTEN DZEHLEN, TOM LYCHE, KNUT MORKEN
Institute of Informatics
University of Oslo

Abstract Two of the authors (Lyche and Mgrken) have recently developed a
knot removal strategy for splines in B-spline format, which has been applied suc-
cessfully to the approximation of functions and data. In this paper we show how
general constraints can be incorporated in this strategy and also in approxima-
tion methods based on knot removal. In our implementation of the knot removal
strategy, two fundamental properties of B-splines were central—knot insertion or
subdivision and the fact that the usual L?-norms for splines can be approximated
well by some simple discrete norms. Together with the fact that a B-spline ex-
pansion is a convex combination of the coefficients, these properties are also the
key features in our treatment of constraints.

Key words: Splines, B-splines, Constrained approximation, Knot insertion,
Knot removal, Discrete norms, Quadratic optimization.

1. Introduction

In Lyche and Mgrken (1988), a strategy for removing knots from a B-spline func-
tion without perturbing the spline more than a prescribed tolerance was devel-
oped. It was also shown how this strategy could be used successfully to compute
approximations to large sets of discrete data, by applying knot removal to some
simple initial approximation like a cubic spline representation of the piecewise
linear interpolant to the data. This also provides a method for approximating
functions as long as they can be sampled sufficiently often. The knot removal
technique was extended to parametric curves and surfaces in Lyche and Mgrken
(1987b).

Our general approach to constrained spline approximation will follow the
same pattern as for unconstrained approximation. First we compute an initial




approximation satisfying the constraints, but in general requiring a large number
of parameters for its representation. Then we remove knots from this spline, but
all the time making sure that we do not violate the constraints or the prescribed
tolerance.

The literature on constrained approximation has grown considerably in the
last few years, see Fontanella (1987) and Utreras (1987) for two recent surveys,
and also the bibliography compiled by Franke and Schumaker (1987). We will
consider a general class of constraints which requires one or more derivatives or
the integral of the approximation to be bounded by general functions.

In the remaining part of this section we introduce our notation and give
some fundamental results concerning splines. In Section 2 we discuss how various
constraints can be written in terms of linear inequality and equality constraints
involving the B-spline coefficients on a suffiently large knot vector. In order to
carry out constrained knot removal, it is desirable to have an initial approximation
which satisfies the constraints. The initial approximation scheme should also cope
with the situation where the data do not satisfy the constraints. We discuss these
questions in Section 3. Knot removal is the topic of Section 4. We review the
unconstrained knot removal strategy in Lyche and Mgrken (1988) and explain
how it can be extended to handle constraints. The paper ends with a section
discussing examples of constrained approximation using the proposed technique.

1.1 Notation

All splines in this paper are represented in terms of B-splines. We denote the :’th
B-spline of order k on the knot vector ¢ by B;;: and assume the B-splines to
be normalized to sum to one. If ¢ contains m + k elements with none occurring
more than k times, then we can form m linearly independent B-splines on ¢.
These B-splines span a linear space of splines defined by

Sae = {idiBi,k,t | dieRfori=1,2,..., m}
=1

In this paper we will assume that m > k, and that ¢, < t;4, and ty, < tmys,
and we will only be interested in the spline functions on the interval [ty,tm+1]-

1.2 Knot insertion

The central ideas of this paper are consequences of the fact that the B-spline
coefficients can model the spline they represent with arbitrary precision. This is
based on so called subdivision or knot insertion techniques, so let us consider the
basis for this. A spline on a knot vector = can also be represented as a spline on
any knot vector ¢ vhat contains all the knots of . The reason for this is that if
T is a subsequence of ¢, then Si , is a subspace of Sy . Let g be a spline in S, ,
with coefficient vector c relative to 7 and coefficient vector b relative to ¢t. Then
¢ and b are related by the equation b = Ac, where A is the knot insertion matrix

-



of order k from 7 to ¢. This matrix has properties very similar to the B-spline
collocation matrix, see Jia (1983), Lyche and Mgrken (1987a, 1988), and Lyche
(1988). One consequence of these properties is that as more and more knots are
inserted, the B-spline coefficients converge to the given spline g, see Cohen and
Schumaker (1985) and Dahmen (1986), where it is shown that the convergence is
quadratic in the knot spacing. This means that if we work on a sufficiently fine
knot vector, we do not lose much by using the coefficients as a representation of
the spline.

1.3 Discrete norms

The ability of the B-spline coefficients to mimic the spline they represent is also
exemplified by the fact that certain simple combinations of the B-spline coeffi-
cients provide good approximations to the L?-norms of the spline. Specifically,
if f =), diBix, is a spline on a knot vector of length m + k as above, we
can define a family of discrete norms called the (€?,t)-norms on S, by

Ifller,e = (T MilP (s — t)/k}?, for 1< p < oo;

Equivalently, if we define the diagonal m x m matrix E./? with the i’th diagonal
element given by

(E,l/’).-'.- — {(tige - ti)/k}l/', for 1 < p < o0;
, for p = oo;

then we also have .
flles e = EL/Pd],.

Here || - ||, denotes either the usual L? norm of a function or the ¢? norm of a
vector. The significance of the (¢?,t)-norms is due to the fundamental inequalities

DM\ fllerr < Nfllp < fllese < NI flleors

where 7 C ¢t and f € S;,,. The leftmost inequality is due to de Boor (1976a and
1976b). The number D; depends only on k, and numerical experiments have
shown that Dy ~ 2*. As an example we have D, ~ 10.

The (£P,t)-norm is of course also a norm on any subspace of St Ifa
spline in a subspace of S is given, then to compute its (€?,¢)-norm it must be
represented as a spline in S, by knot insertion or degree elevation.

We will be using the (£°,t)-norm to estimate the relative importance of
the interior knots during knot removal, and the error of an approximation will
be measured in this norm since it gives an upper bound on the L°°-norm. The
method we will employ to compute spline approximations will be best approxi-
mation in the (£2,¢)-norm. This norm converges to the L?-norm for continuous

ot
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functions as the knct spacing goes to zero, see Lyche and Mgrken (1988), and it
can even be shown that the best approximation in the (£2,t)-norm converges to
the best approximation in the L?-norm. The main advantage of working with
this discrete norm iustead of the L?-norm is computational efficiency.

Compared with other (¢?,t)-norms, the (¢€2,t)-norm has the advantage that
best approximation leads to a simple linear system of equations. When it comes
to constrained approximation this may not be so crucial, and approximation in
the (£!,¢)-norm and the (£°°,t)-norm are interesting alternatives. To develop
efficient algorithms for constrained spline approximation in these norms will be
the subject of future work by the authors.

2. Constraints

Our approach to constrained approximation is also based on the fact that the
B-spline coefficients model the spline they represent. Let f = Y"T~ d;B; i be
a spline in S; ¢ to be approximated by a spline g = Z:;l ¢iB; r,» in a subspace
Si,r, and denote by b the coefficient vector of g relative to ¢, so that b = Ac.
We will consider constraints of the form

Eib 2> v,

E2b = v, (1)
where E; and E; are rectangular matrices and v; and v, are vectors. (The
notation u > w for vectors u and w denotes the component-wise inequalities
u; > w; for : =1, 2, ....) In other words, the constraints can be expressed
directly as restrictions on linear combinations of the coefficients relative to the ¢
knot vector. The constraints characterize the set of permissible spline functions,

Fro= {#= Y bBuse | Erb> vy & Byb= vy},

=1

As mentioned above, we will use best approximation in the (£2,¢)-norm to com-
pute spline approximations. The typical optimization problem to be solved is
therefore

If =¥l (2)

and a matrix formulation of this problem is given in Section 4.2. This problem
is a quadratic minimization problem with linear constraints. Such problems are
studied extensively in the optimization literature, see e.g. Fletcher (1987). We
emphasize that even though the approximation g is a spline on the knot vector
T, we minimize a weighted £?-norm of the B-spline coefficients of the error on
the ¢ knot vector which for good results should contain ‘many’ knots.

In practice, any constraints that can be handled by the quadratic minimiza-
tion routine that is used to solve (2) are admissible, but in this paper we restrict

min
vEF, NS, .
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our attention to linear constraints of the type (1). It should be noted here that
constrained problems for parametric curves and surfaces often lead to nonlinear
constraints, cf. Ferguson, Frank and Jones (1988).

It has been observed that bounds on a spline g or its derivatives can be
replaced by a finite number of linear inequality constraints on the B-spline coeffi-
cients of g, see e.g. Cox (1987). In general though, the replacing constraints will
be stronger than the original ones so that the set of feasible solutions is overly
restricted. Recall that during knot removal we also have a requirement that the
error should be less than the tolerance. This additional constraint together with
the constraint on the B-spline coefficients may result in a problem having no
feasible solutions. To weaken the constraints, we propose to use knot insertion
and constrain the B-spline coefficients on a knot vector which has many knots
compared to the number of oscillations in the spline to be approximated. In this
way the discrepancy between the original and replacing constraints is reduced.

As an example, consider the polynomial T(z) = 4z% — 3z + 1 on the interval
[—1, 1] as a given function to be approximated on the Bezier knot vector T with
four knots at —1 and 1, with L -error less than € and with nonnegativity as the
constraint. The function T is the cubic Chebyshev polynomial with the constant
1 added to make it nonnegative. If we choose the approximation g to be T,
then we solve the problem exactly. However, a general purpose algorithm for
solving this type of problem would probably not discover that T is nonnegative
and a feasible solution. Our approach implements the ideas above. A sufficient
condition for nonnegativity is that the B-spline coefficients on some knot vector
are nonnegative, and instead of requiring the L°-error to be less than ¢ we
require the (€°°,t)-error to be less than € for a suitable . Note that on the
Bezier knot vector 7, one of the B-spline coefficients equals —4 so this knot
vector is not suitable as ¢, since the nonnegativity constraint would lead to a
(€°°,t)-error of at least 4. If we insert the 2¢ — 1 interior knots (-1 +1/q,—1 +
2/q,...,-1/9,0,1/¢,2/q,...,1—-1/q) into T, where q is a positive integer, then
it is easily seen that on this refined knot vector ¢?, all the B-spline coefficients of
T are greater than —2/¢%. Therefore, for the set of feasible solutions
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Feoo = {l/J = ZbiBu,u
:

T — ¥llece t0 < € & ¢; = 0 for all i}

to be nonempty, we must have 2/¢? < € or ¢ > V2//fe. °
In the rest of this section we assume that we have a knot vector t on which the

original constraints have been replaced by constraints on the B-spline coefficients

in a satisfactory way. We now discuss some specific constraints, and we start by

considering nonnegativity constraints in general. As was indicated in the example,

the obvious way to implement straightforward nonnegativity is to require the B- PY

spline coefficients on ¢, of an approximation ¢ = Y_\~. b;Bi s ¢, to be nonnegative,

i=1

b; >0, fori=1,2,..., m.
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In many cases one only wants nonnegativity locally, say on an interval [a, ]
which is contained in [t,tn41]. This is accomplished by requiring nonnegativity
of only the coefficients that multiply a B-spline with part of its support in [a, }].
To be able to strictly enforce such conditions, it may be necessary to refine ¢ by
including a and b as knots of multiplicity k£ — 1.

A simple generalization of the nonnegativity constraint is to require

b > e, fort=1,2,..., m,

for some real number e. The next step is then to require ¢ > h for a spline
h= Z:’;‘l €;B; t,:, on a knot vector £;. To be able to compare h, f and an
approximation g we then replace £ by £Ut; and assume that on the new ¢t knot
vector the constraining spline is given by h = Z:'_'__l e;Bii¢. Then we would
simply require

b; > e, fori=1,2,..., m.

These more general constraints are easily restricted to some interval just as above.
All of these constraints have restricted the approximation from below. If a
restriction from above is required, this is most conveniently expressed as —b; >
—e.
There are many other types of constraints that can be written as linear
equality and inequality constraints.

e Monotonicity and convexity.
A monotone approximation g is characterized by ¢' < 0O or ¢ >0 and a
convex appioximation by g” > 0. By the well known differentiation formula
for B-splines, these constraints can be implemented similarly to the nonneg-
ativity constraints and also generalized in the same way. In general, any
derivative of order less than k can be constrained in this manner.

¢ Interpolation.
The approximation can be required to interpolate a given value y at a point
z leading to an equality constraint of the form,

Y biBik(z) =y.
=1

It is well known that at most k& B-splines are nonzero at z so that this sum
contains at most k terms. Any derivative can of course be interpolated in a
similar way.

¢ Integral constraints.
The integral of the approximation can be constrained by requiring

/9 = Ebi(tHb —t)/k>e.

=1




The equality follows because the integral of B, is known to be (t;4x —
t;)/k. If only the integral over a small interval [a,}] is to be constrained,
one could insert k — 1-tuple knots at a and b.

¢ Smoothness.
An approximation g with a required smoothness is obtained by restricting
the multiplicity of the knot vector on which ¢ is defined.

¢ Discontinuities.
Jumps in derivatives can be enforced by using some of the above techniques.
If we want a sharp edge at the point a for instance, we must first ensure
that a occurs with multiplicity & — 1 in the knot vector. We can then for
example enforce g'(z) > 1 for z < a and ¢'(z) < 0 for z > a. In fact, it is
easily seen that it is sufficient to restrict only three coefficients.

Any linear combination of the constraints above is also a valid constraint. As an
example one could force the approximation to take on the value of its integral at
a given point by combining interpolation and integration constraints.

It should be noted that the requirement that the (£°,t)-error should be
less than the tolerance can be implemented as a constraint of the above type.
However, it seems more efficient to implement this constraint in the same manner
as in unconstrained knot removal, cf. Section 4.

3. The initial approximation

In general, constrained approximation of data by constrained knot removal, will
require two steps as described in the introduction. First, an initial spline approx-
imation to the data satisfying the constraints is computed, and then constrained
knot removal is applied to this initial approximation. The purpose of the second
step is to remove those knots in the initial approximation that are redundant
relative to a given tolerance. This step will be described in Section 4. Here we
will discuss the problem of computing an initial approximation.

In general we also determine an initial approximation in two stages. First, the
data are converted to a spline ¢ which does not necessarily satisfy the constraints.
Then, on the knot vector ¢ of ¢, we compute a spline approximation f to ¢
satisfying the constraints.

Let us discuss each stage in more detail. For the first stage we are given
some data to be approximated. These data can be in different forms. It may
be a set of discrete data, a general function or a spline function. The purpose
of Stage 1 is to convert the data into a spline ¢ of order k on a knot vector t.
If the data is a set of discrete points (z,;,y;) with the abscissae increasing, we
can let ¢ be either the linear interpolant to the data, the Schoenberg variation
diminishing spline, or we can determine ¢ by using unconstrained knot removal
or some other suitable method. Similarly, if the data is a general function or a
spline of order greater than k, we can approximate it by a spline of order k by




e

using the same method. In either case we end up with a spline function ¢ of
order k on a knot vector t of length m + k with B-spline coeflicients (a;), .
In constrained approximation there will in general be a conflict between
satisfying the constraints and making the error smaller than the tolerance, since
the original data may not satisfy the constraints. As an example consider the
case where the original data take on the value —1 at a point, but the constraints
require the approximation to be nonnegative everywhere and the tolerance is 0.01.
To cope with situations of this kind, we need Stage 2 to adjust the spline ¢ above
to a spline f on the same knot vector that satisfies the constraints. This is done
by simply minimizing the £2,t-norm of the error and enforcing the constraints.
In other words, the spline f solves the quadratic optimization problem
min [|¢ — Plle, (3)

YEF. ¢

which is just a special case of (2). This is equivalent to the problem

. 1/2 _
min [|E,"(z - a)2
subject to
Eyz 2 v,

Egz = v,.

The attitude taken here is that it is more important to satisfy the constraints
than to keep the error smaller than the tolerance. This spline will then be given
as input to the knot removal process.

It should be noted that this step is not always necessary. Consider once again
a discrete set of nonnegative data. If we take the piecewise linear interpolant to
the data as ¢, then this spline will automatically satisfy the constraints and
we can set f = ¢. The same applies with global monotonicity and convexity
constraints if we approximate the discrete data by piecewise linear interpolation
or by the Schoenberg variation diminishing spline.

In some situations the minimization problem (2) will succeed in finding a ¢
in Fi ¢ even if f & Fy¢. This would for example be the case when ¢ > —107¢,
the tolerance is 0.01 and the constraint is nonnegativity.

4. Knot removal

With the initial approximation f, the tolerance, and the constraints given, we
can start to remove knots. More precisely we have the following problem.

Constrained knot removal problem. Given a polynomial order k, a knot
vector t, a set of linear constraints characterizing a subset Fy ¢ of Sy, a spline
f in Si ¢ and a tolerance ¢; find a knot vector = C ¢t which is as short as possible
and a spline g € Sa,r NFi,¢ such that ||f — gllew s <.

To discuss this problem we first review unconstrained knot removal.
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4.1 Review of unconstrained knot removal

In knot removal one is given a spline f in S;: and a tolerance ¢; the goal is to
determine a spline ¢ in a subspace Si , of Si ¢ of lowest possible dimension, such
that ||f — g|| < €. The norm used here is in principle arbitrary, but in Lyche and
Mgrken (1988) we used the (£°°,¢)-norm.

Since finding the shortest possible = seems very difficult, the method only
attempts to find an approximate solution. The idea is to compute a ranking of
the interior knots of ¢ according to their significance in the representation of f,
and then try to remove as many knots as possible according to this ranking. More
specifically, for each interior knot ¢; its weight w; is computed as the absolute
error in best (£*°,¢) approximation to f from the space Si ¢\ (). Clearly, if ¢;
is redundant then w; = 0. (This description is correct if all the interior knots
are simple; multiple interior knots cause some complications.) We could then
rank the knots according to their weights w;, but this would not work very well
when many knots have more or less equal weights. To compensate for this, knots
with similar weights are grouped together. The first group consists of the knots
with weights between 0 and ¢/2, the second group those with weights between
¢/2 and € and so on. The knots in each group are listed in the order in which
they occur in the knot vector. Suppose that there are 40 knots in the first group
and 30 knots in the second group, and that we want to remove 50 knots. Those
50 knots would then be the 40 knots in the first group plus 10 knots from the
second group. The 10 knots from the second group would be every third knot in
the order that they occur in the group.

It is not possible to determine from the weights themselves how many knots
can be removed without the error exceeding the tolerance. Therefore, the exact
number of knots to be removed is determined by a binary search. First, half the
knots are removed and an approximation is computed as the best approximation
in the (€2,t)-norm, together with the error in the (£°,t)-norm. If the error is
too large, the approximation is discarded and we try to remove 1/4 of the knots
instead. If the error is acceptable, we save the approximation and try to remove
3/4 of the knots. This process is continued until the exact number of knots that
can be removed has been determined.

By running through this process, a spline approximation g with knot vector
7 is determined. However, it turns out that it is usually possible to remove even
more knots. The knots 7 of g are of course also knots of f and now we can
compute a ranking of the knots of 7 as their significance in the representation
of ¢g. This ranking can then be used to remove more knots from ¢ to obtain an
approximation to f with even fewer knots than 7. The process terminates when
no more knots can be removed without the error exceeding the tolerance.

The knot removal process outlined above constitutes a convenient basis for
general spline approximation methods. Since we have a method for removing
knots from a spline, we just have to produce a good approximation to a func-
tion or to discrete data without worrying too much about the number of knots
since this can be reduced afterwards. Possible initial approximation schemes in-
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clude piecewise linear approximation, cubic Hermite interpolation, Schoenberg
variation diminishing approximation and many more.

4.2 Constrained knot removal

The general philosophy used in unconstrained knot removal can also be applied
to the constrained case. The following changes in the strategy used in the last
subsection are necessary for solving the problem stated at the beginning of this
section.

o The fixed knot approximation method used during knot removal has to pre-
serve the constraints.

o The ranking procedure also includes spline approximation, and in general
the constraints must be taken into account when the weights are computed.

Constrained ranking is currently under investigation by the authors, and we will
not discuss it any further in this paper. In the examples in Section 5 we will use
the same ranking procedure as in the unconstrained case.

The fixed knot approximation method was introduced in Section 2. Suppose
that we have decided to remove some knots and have a knot vector = which
is a subsequence of t. We want to find an approximation ¢ on r to f which
satisfies the constraints. We determine g by the optimization problem (2). If
7 has length n + k, then the B-spline coefficients of g must solve the quadratic
minimization problem

min || E;/*(Az - d)|

subject to
El Az 2 Y1,
E,Az = v,.

The knot removal process will continue until it is not possible to remove any more
knots without either violating the tolerance or the constraints.

5. Examples

In this section we give three examples of the use of the constrained approximation
scheme outlined in the preceding sections. The quadratic optimization problems
involved have been solved by general purpose library software. Since most of the
constraints cause the matrices E, and E; to be very sparse, performance can
be improved considerably both in terms of storage and CPU-time by tailoring
the optimization routines to this type of problems. This we consider to be an
important area of future research.



5.1 One-sided approximation

The method outlined in the previous sections can be used to construct one-sided
approximations to functions. In this example a tolerance ¢ = 10~2 is given, and
we want to find a cubic spline approximation ¢ to the function

®(z) = max(sin(rz),0), for z € [0,4],

subject to the constraint g(z) — ®(z) > 0 for all z € [0,4]. To construct an
initial cubic spline approximation to ¥, let

209
f(z) =) (2(7) +107°)B; 4 4(z),
=1
where )
t) = §(t§+1+t5+2+t.‘+3), i=1,2,..., 209,

and the knot vector t consists of the numbers (0.02 * j) for y =0, 1, ..., 200,
with knots of multiplicity four at 0 and 4, and knots of multiplicity three at 1,
2 and 3.
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Figure 1. Initial one-sided approximation to a given function.

The spline f is the Schoenberg variation diminishing approximation to ¢ + 103
which satisfies the constraints, but has far too many knots. Figure 1 shows the
approximation f (solid curve) and the error f — & (dashed curve). The location
of the knots of f are indicated a. the bottom of Figure 1.

With the constrained knot removal procedure described in the previous sec-
tions, an approximation g to f is found subject to the constraint ¢ — f > 0 and
such that ¢ — f < ¢ — 1073, That is, the approximation g to ® is within the
given tolerance ¢ = 10~? and g — ¢ is positive. Figure 2 shows g (solid curve)
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Figure 2. Final one-sided approximation after knot removal.

and the error ¢ — ® (dashed curve) together with the location of the interior
knots left by the constrained knot removal method. The initial knot vector has

been reduced to

r =(0,0,0,0,0.5,1,1,1,2,2,2,2.5,3,3,3,4,4,4,4).

5.2 Convex approximation.

(L L L L e
-

-

Figure 3. The initial convex approximation to the turbine data.

The dashed curve shown in Figure 3 is a cubic spline approximation to a set of

data points
(2.‘, yl) = (2'v yi)a

fori=1,2,..., 50,
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! where y; is measured electricity when 2i percent of maximum power is forced
- upon a particular water turbine. A large number of turbines have been tested
and data measured, and all turbines have similar curves depending on the turbine
type, the size of the turbine and various other factors. These curves make it
possible to choose the right turbines given the water resources and the need
for electric power. Physical considerations indicate that such curves should be
convex, and with a tolerance of ¢ = 1.0 there is clearly scope for knot removal,
so it is natural to apply knot removal with convex constraints.

The dashed curve ¢ shown in Figure 3 is in fact the Schoenberg variation
diminishing approximation to the data on the knot vector

t=(t)} =(2,2,2,2,6,8,...,94,96,100,100, 100, 100).

The interior knots are indicated at the top of Figure 3. Our problem is to con-
struct a spline approximation g to ¢ subject to the constraints

g(tl) = ¢(t1), g(t54) = ¢(t54), g"(l’) Z 0 forall z € [2, 100].

First, we computed an initial spline approximation f on ¢t which solves (3) with

F4'¢ = {Zijj"" l d1 = a & dso = aso &E Adj 2 0, fOI‘ 3 S] S 50},
¥

where (a;) and (d;) are the B-spline coefficients of ¢ and f on t, and Ad; is
defined by
Adj = 0j~1d; — (051 +0;)dj1 + 05d 2,

where 0; = (t;4+3 — t;)/3. The spline f is shown in Figure 3 (solid curve).

Figure 4. The final convex approximation after knot removal.
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Figure 5. The second derivative of the initial (left) and final convex
approximations.

Applying constrained knot removal to f with the same constraints and with
tolerance € = 1.0, we get the final cubic spline approximation g. This spline is
shown in Figure 4 (solid curve) together with the error function g — f (dashed
curve). The three remaining interior knots are indicated at the top of the figure.

Figure 5 shows the second derivative of f and ¢, and we observe that g is
smoother than f. We also observe that the computed convex approximation to
the given data consists almost of two straight lines.
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Figure 6. Initial approximation to the turbine data with the first
derivative bounded from below by a positive spline.

5.3 Curved constraints
This example illustrates that it is possible to introduce curved constraints into
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the knot removal method. The initial data are the values of the cubic spline ¢ on
the knot vector ¢ = (¢;);* of the previous example. We are also given a quadratic
spline h on the same knot vector (the dashed curve in Figure 8). Our problem is

to construct a spline approximation g to ¢ with as few knots as possible, subject
to the constraints

g(t1) = o(t1), g(tse) = d(tsq), g'(z) > h(z) for all z € [2,100].

The tolerance is 1.0 as in the previous example.

First, we compute an initial spline approximation f on t which solves (3)
with

Fee= {Z d;Bj4t | dy =a; &dso =aso &(dj—dj_y)/o; > ejfor 2<j < 50},
J
where a; and (ej) are the B-spline coefficients of ¢ and k on ¢, and o; =

(tj+3 — t;)/3. The result is shown in Figure 6, with ¢ dashed and f as a solid
curve. We note that f is monotone since we have chosen a positive 4.
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Figure 7. The final approximation with bound on the derivative after
knot removal.

Figure 7 shows the result of applying constrained knot removal to f with
the given tolerance € = 1.0. The dashed curve is the error function g — f, and
the solid curve is the final spline approximation g to ¢. The number of interior
knots was reduced from 46 to 9, and the location of the remaining interior knots
is marked at the top of the figure.

In Figure 8 the constraining function h (dashed curve) and ¢’ (solid curve)
are plotted. We note that the peak in ¢' is induced from the rapid increase in
the data ¢ in that area.
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Figure 8. The first derivative of the final approximation and its lower
bound.
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NEAR REAL-TIME SPLINE FITTING OF LONG SEQUENCES OF
UNIFORMLY-SPACED DATA

G. T. ANTHONY anp M. G. COX
National Physical Laboratory, Teddington

Abstract Data is frequently captured in very long sequences at equal intervals in the
independent variable. This situation occurs, for instance, in medical diagnosis where
various quantities (eg intestinal pressure and acidity) are regularly recorded at short
time intervals (seconds) over periods of many hours. There are consequent difficulties
in storing and analysing the resulting very large amounts of data. Another difficulty
in analysing the data (to discover peaks, zeros, etc) is that the data is often noisy.
These difficulties are reduced by first fitting a smooth mathematical function to the
data and then working instead with that function. We consider here an approximate
least-squares fitting method using polynomial splines with uniformly spaced knots at
some of the data points. Advantage is taken of the structure of the normal matrix
to develop a technique that is near real-time in that it produces a “running fit” over
successive blocks of data. The degree to which the method is approximate can be
controlled. The algorithm is fast in operation and the fits have local properties.
Key words:  B-splines, data approximation, least squares, medical data analysis

1. Introduction

Tijskens, Janssens, Vantrappen, De Bondt and Vandewalle [11], in considering the
automatic analysis of medical data gathered from (digitised) multi-channel chart
recorders, have presented a method for fitting extremely long sequences of uniformly
spaced data. They seek a fit in the form of a cubic spline with prescribed uniform
knots, because this function is sufficiently versatile to represent such data adequately.
Moreover, this form is convenient for subsequent (medical) analysis of the tracings.
Data reduction is important because it is necessary to avoid storing the very large
amounts of data involved. This implies that the fitting should be performed essen-
tially in “real time”, that is as the data is gathered. To this end they use a “window”
technique. Data in a window spanning an odd number of spline intervals is fitted




by a spline in its B-spline form in the least-squares sense. using the singular value
decomposition (SVD) [5, page 293 et seq]. The central coefficient of the fit is retained,
the window advanced one interval and the process repeated. The window is chosen
large enough so that, to the required accuracy, the coefficients obtained are identical
to those that would have been calculated in a single fit to all the data.

The SVD is a powerful tool that, in this case, takes no advantage of the structure
of the spline-fitting problem. Consequently, the computation time is unnecessarily
long. Since the knots of the spline are prescribed, each B-spline coefficient is a linear
combination of the data values in the window. The multipliers or weights in the
linear combination can be pre-computed using an approach described below. Thus
the method is reduced to the evaluation of a single inner product for each coefficient,
with the same set of multipliers in each case. This paper describes this alternative
approach.

2. Solution method

We shall let z denote the independent variable and y the dependent variable (in this
case time and the medical response indicated on the chart recorder, respectively).
Data values {y,} are assumed to be provided sequentially at corresponding points
{z,} having a uniform spacing k. This data is to be approximated in near real-time
by a polynomial spline s(z) of order m (degree m — 1) with uniformly spaced knots.
A knot will be placed at every pth data point, and thus the knot spacing will be ph.
It is algebraically convenient to scale the independent variable so that ph = 1. If this
is done the scaled data spacing is p~! and the knots are at the integers. p is then
the data density, that is the number of data abscissae per unit of the independent
variable z. Henceforth we shall work only in the scaled variables.
The spline s will be represented as a linear combination of B-splines,

s(z) = chNm(z -ikh
b

where N,,(z) is the normalized B-spline of order m with the knots 0,1,...,m [2].

A (linear) data fitting problem, in which the fitting function is expressed as
a linear combination of basis functions (here the B-splines), can be formulated by
writing the model equation for each data point, giving an overdetermined system of
linear equations:

Ac=1y. (1)

In (1), each row of the observation matrix A contains values of the basis functions
at a data point, y is the vector of corresponding data values and c is the vector of
coefficients to be determined. The normal-equations approach [6, page 121 et seq]
to obtaining the least-squares solution to (1) consists in forming and solving the
equations

He=z, (2)

‘9 . g
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where H = ATA and : = ATy.

The system of equations (2) has a unique solution and, equivalently, H is invert-
ible if and only if A has full column rank.

The computation falls broadly into two parts: forming H and inverting it. In the
present application it is particularly simple to form H because, with uniform knots,
all B-splines (of a given order) are translations of one another. So the element in row
r and column j of Ais N,,(z, - j), and it follows from the compact support property
of B-splines (2] and the uniform spacing of the data that H is a (2m — 1)-diagonal
Toeplitz matrix (that is the elements on each diagonal are constant). A row of H
takes the form

{"'! Ov hm—h hm-2| LERR} h], h’Oa hl) (AR hm-la 09 }7
with

hj = E N (2¢) Ny (20 — 7).

Because of the uniform knots and data, H is well conditioned and invertible for

moderate values of m provided p is greater than unity. So the usual objection that the

formation and solution of the normal equations can introduce errors that are greater

in magnitude than those we expect with a stable algorithm is of no significance here.
Consider, as an example, the piecewise linear case, m = 2. Here

z, z €0, 1),
No(z) =4 2-z, z€]l, 2,
0, otherwise,
so that
hy =) Ny(z,)Na(z, — 1)
-2(-3) G-
S\ \p
1
= Tp(l’2 -1)
and

ho =Y Na(z,)Ny(z,)

P 2 ¥ 2
SO
r=0 p r=p p
1

The typical row of H for B-splines of other orders can be obtained similarly, using
the basic recurrence relation for B-splines [1] and formulae for the sums of powers of




Linear
3lphy = 4 +
3lph, = P - 1
Quadratic
5!p%hg =  66p* — 6
5%h, =  26p% +
5!?3,12 = p‘ - 1
Cubic
T'pPhe = 2416p° + Yip? 4+ 2P0
Tphy, = 1191p° - 21p? - 130
T'p%hy, = 120p° + + €
Tp%hy = PP+ Ipt - 10
TABLE 1

Ezpressions for the nonzero elements in the typical row of the normal matriz H.

the natural numbers, or by more sophisticated methods. The linear, quadratic and
cubic cases are given in Table 1, where, for order m, each element is multiplied by
(2m — 1)!p?™-3 giving even polynomials of degree 2m — 2.

Various properties of these polynomials are readily demonstrated. In particular,
we note that the leading coefficients are the values of N,,, at the knots, the trailing
coefficients are proportional to the binomial coefficients of order 2m — 2, and the
coefficient of p?™~* is zero (if m > 2). The first observation is analogous to the
integral result [10]

/_ : M. (2 — j)My(z - k)dz = My 1o(j — k), (3)

with r = t. In (3), M, = rN, is the B-spline with integral normalization
1%, M, (z)dz =1 [8].

The third observation means that (for m > 2) the leading term dominates by
a factor O(p*). This factor gives an indication of the convergence of the solution
of the discrete least-squares spline approximation problem, as considered here, to
that of the continuous uniform-knot spline approximation problem of minimizing
122 (y(2) - s(2))d.

The second part of the calculation, obtaining the inverse G of H, can also be
variously accomplished. Yamamoto and Tkebe [12] give a direct formulation for the
inversion of band matrices which is particularly simple for tridiagonal matrices. In
our linear case, m = 2, this gives for the i, j-th element of G (symmetric)

(ai_ﬂi)(an+lﬂj_ajﬂn+l) o
(@-plai -y 0 13

where o and 3 are the roots of

g'y] =-

hit* + hot + hy =0




and n is the dimension of H.
This is equivalent, for sufficiently large n, to a row

{--'v 92, 91, 90, 91, 92 ---}

of G being given by
1

go = Tﬁ +2) 31

gi—-1=—kg; - gj+1, 22, k=ho/hy = (4p* +2)/(P* +1).

The sequence {g;} can be calculated by setting gn41 =0, gn = 1 for some (no-
tional) N, and applying the recurrence above for decreasing values of the suffix until
a gn_p i8 calculated with a sufficient number of significant figures. The sequence is
then renumbered and normalized so that gn_as is go = 1//(p? + 2)/3.

The typical row of G for this order of spline is shown to 6 decimal places for p
= 2, 4, 10 in the left-hand part of Table 2. For p = 10, the decay factor k is close to
its lower limit of 2 + /3 = 3.732.

The Yamamoto and Ikebe algorithm is less straightforward for m > 2. An alter-
native approach is to use software from any of the standard linear algebra algorithms
libraries such as NAG [4] or LINPACK (3]. For demonstration purposes we used the
INV function from PC-MATLAB {[7]. This employs an LU decomposition of H and
then inverts the factors. The typical (symmetric half-) rows of G for m = 4 (cubic)
with p = 2,4,10 are shown in the right-hand part of Table 2. The decay factor is
close to 2 in all three cases. In fact we can see from Table 1 that the decay tends to
2416/1191 =~ 2.0285 as p increases.

Finally, the coefficients of the fit are obtained by multiplying an appropriate
(symmetric) section of the typical row of G into the corresponding section of z. The
choice of this section is equivalent to choosing the number of spline intervals in the
window of the procedure of Tijskens et al [11]. It should be emphasised that once
the order m and data density p have been chosen, the calculation of the typical row
of G is only required once and can be pre-computed. This gives an a priori estimate
of the number of data points in a window needed to achieve a given accuracy of fit.

A refinement of the method is to compute X = GAT (the pseudoinverse [6, page
36 seq] of A), either directly or as the product of G and AT. The coefficients of the
fit are then obtained as the scalar product of an appropriate part of a row of X and
the corresponding part of y. Table 3 shows part of the (symmetric half-) rows of X
for m = 4 and p = 2,4, 10 produced using PC-MATLAB. The elements of X exhibit
a “piecewise” decay, and it is again straightforward to determine the length of the
section of a row of X (equal to the number of data points in a window) required to
achieve a given accuracy.

In the above we have implicitly assumed that the range over which the response
is measured (and fitted) is of infinite extent. It follows that the matrices A, H, etc
are of infinite order. Obviously, the data is gathered on a finite range. Equally




p=2 p=14 p=10

0.000001  0.000000 0.000000

=2 =1 P = 10_] -0.000001 -0.000001 0.000000
R = 0.000002 0.000002 0.000001
: : : -0.000005 -0.000003 -0.000001
-0.000000 -0.000001 -0.000001 0.000009 0.000006 0.000002
0.000000 0.000004 0.000003 -0.000017 -0.000010 -0.000004
-0.000003 -0.000018 -0.000015 0.000032 0.000019  0.000008
0.000018 0.000078 0.000057 -0.000060 -0.000036 -0.000015
-0.000105 -0.000327 -0.000217 0.000114 0.000068 0.000027
0.000612 0.001363 0.000824 -0.000215 -0.000127 -0.000051
-0.003571 -0.005672 -0.003132 0.000407  0.000237  0.000095
0.020815 0.023595 0.011893 -0.000768 -0.000443 -0.000178
-0.121320 -0.098146 -0.045163 0.001450 0.000828 0.000333
0.707106 0.408248 0.171498 -0.002737 -0.001547 -0.000622
-0.121320 -0.098146 -0.045163 0.005168 0.002891 0.001162
0.020815 0.023595 0.011893 -0.009758 -0.005403 -0.002170
-0.003571 -0.005672 -0.003132 0.018425 0.010098 0.004055
0.000612 0.001363 0.000824 -0.034791 -0.018872 -0.007575
-0.000105 -0.000327 -0.000217 0.065690 0.035270 0.014151
0.000018 0.000078 0.000057 -0.124025 -0.065913 -0.026434
-0.000003 -0.000018 -0.000015 0.234093 0.123144  0.049365
0.000000 0.000004 0.000003 -0.441263 -0.229778 -0.092074
-0.000000 -0.000001 -0.000001 0.827044 0.426393 0.170791
: : : -1.511359 -0.771993 -0.309097
2.445129 1.240342 0.496466

-1.511359 -0.771993 -0.309097

0.827044 0.426393 0.170791

TABLE 2
The left-hand part of the table gives the values of the elements in the typical row of G, the inverse of
the normal matriz H, in the case m = 2 (spline of degree 1) for three values of p, the data density.
The right-hand part is the counterpart of this in the case m = 4 (cubic spline), showing (symmetric)
half-rows.




p=4 p=10 p=2 p=4 p=10
...continued

0.000005 -0.002426 : : :
0.000000 -0.002362 0.000030 | 0.002686 -0.029575
-0.000007 -0.002016 -0.000041 | -0.000055 -0.028844
-0.000011 -0.001360 -0.000057 | -0.003582 -0.024690
-0.000010 -0.000466 0.000078 | -0.005902 -0.016789
0.000000 0.000569 0.000107 | -0.005020 -0.005991
0.000013 0.001652 -0.000147 | 0.000103 0.006555
0.000021 0.002685 -0.000202 | 0.006695 0.019704
0.000018 0.003573 0.000278 | 0.011030 0.032307
0.000000 0.004221 0.000382 | 0.009383 0.043218
-0.000024 0.004533 -0.000525 | -0.000191 0.051290
-0.000040 0.004413 -0.000722 | -0.012511  0.055375
-0.000034 0.003766 0.000992 | -0.020614 0.054327
0.000001  0.002541 0.001363 | -0.017540 0.046998
0.000045 0.000872 -0.001873 | 0.000347 0.032772
0.000074 -0.001063 -0.002573 | 0.023371 0.013145
0.000063 -0.003085 0.003536 | 0.038528 -0.009852
-0.000001 -0.005015 0.004859 | 0.032814 -0.034192
-0.000084 -0.006675 -0.006676 | -0.000567 -0.057847
-0.000138 -0.007886 -0.009174 | -0.043585 -0.078789
-0.000118 -0.008469 0.012606 | -0.072007 -0.094988
0.000002 -0.008245 0.017324 | -0.061596 -0.104418
0.000157 -0.007037 -0.023800 | 0.000387 -0.105050
0.000259 -0.004750 -0.032720 | 0.080694 -0.094856
0.000220 -0.001632 0.044916 | 0.134580 -0.072627
-0.000005 0.001982 0.061847 | 0.117300 -0.040441
-0.000294 0.005758 -0.084623 | 0.004759 -0.001194
-0.000484 0.009365 -0.117319 | -0.144547 0.042219
-0.000411 0.012466 0.158243 | -0.251472 0.086899
0.000008 0.014730 0.225926 | -0.236873 0.129951
0.000549 0.015823 -0.286154 | -0.053637 0.168479
0.000904 0.015410 -0.462210 { 0.217217 0.199584
0.000769 0.013159 0.433175§ 0.462635 0.220372
-0.000016 0.008894 1.126300 | 0.569564 0.227945
-0.001026 0.003079 0.433175 | 0.462635 0.220372
-0.001690 -0.003666 -0.462210 | 9.217217 0.199584
continued ... : : :

TABLE 3
The ualu.c: of the elements in the typical (symmetric) half-row of X, the pseudoinverse of the
observation matriz A, in the case m = 4 (cubic spline) for three values of p, the data density. Note
the “piecewise decay” in the magnitude of the elements.
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obviously, the observation matrix A is finite and not all its rows have the same non-
zero elements, because the first few and last few rows are curtailed. These end effects
lead to a matrix G whose first few and last few rows are not shifted copies of a
typical row. However, for sufficiently large orders of matrix, the rows converge to a
central section of the matrix whose rows do have this property to working precision.
Furthermore, to that precision the typical row is the typical row of the infinite case.
The required order is quite modest; the examples given above were computed with
matrices of order 40.

3. Conclusion

We have described a near real-time algorithm for fitting arbitrarily long sequences of
uniformly-spaced data. The method uses splines with uniform knots and achieves an
approximation to the least-squares fit to all the data. If sufficient data values “local
to” any particular B-spline coefficient in the approximant s are employed then, to
any specified precision, s can be regarded as the least-squares fit. In particular, for
practical purposes, the accuracy of the data indicates the number of data values to
be employed. For instance, if the data density p is 10, the data is accurate to approx-
imately two significant figures, and a cubic spline is used, each B-spline coefficient
can be formed as a linear combination of about 150 of the data values. However,
there is one “replacement” B-spline coefficient in this case for every 10 data values.
Hence each data value is used in each of 15 B-spline coefficient evaluations. The total
number of floating-point operations is therefore only 15 times the number of data
points. Similar statements can be made for other values of m and p. The multipli-
ers in the linear combination are formed by a straightforward pre-computation that
depends on p and the data accuracy.

The case p equals 1 corresponds to placing a knot at every data point and hence
to interpolation. Of course, this is a much-studied problem dating from the seminal
work of Schoenberg (8, 9]. In one sense, the ideas here are a straightforward gener-
alization of Schoenberg’s work. Considerable work needs to be done, particularly on
its theoretical aspects, to develop this generalization fully.
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AN ALGORITHM FOR KNOT LOCATION IN BIVARIATE LEAST SQUARES
SPLINE APPROXIMATION
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Abstract  An automatic algorithm for the determination of a lattice suitable for the
construction of bivariate least squares splines is studied. Some numerical examples

are quoted.
Key words:  Bivariate splines, Knot location, Least squares approximation.

1. Introduction

The problem of constructing a surface F(z,y), (z,y) € D C R?, from a discrete
number of points (z;, ¥;, fi) ({ = 1,..., N) has been studied by many authors. In the
literature there appears to be greater concentration on the development of algorithms
for data interpolation than for approximation of data subject to errors, where we are
faced with additional difficulties.

When spline functions are employed, it is well-known that cubic splines afford
a good balance between efficiency and goodness of fit. These functions are gener-
ally written in terms of the tensor product of B-spline basis functions {B,(z)} with
{Bm(y)} defined on the Cartesian axes. '

In the case of cubic spline interpolation, an interpolant to data on any rectangular
grid can be constructed. If the grid is defined by the linesz = z; (i=1,...,N;), y =
y; ( =1,...,Ny), then the points z; and y; determine the knots for the interpolating
spline.

When the data values contain random errors, we may construct an approximation
by the method of least squares. The approximating function is written in terms of
basis functions, fewer in number than the data points, defined on a knot set which is
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different from the original data point set. The choice of knots can greatly affect how
well the surface fits the data.

In this paper an algorithm is presented for the automatic placement of the knots
in the case of bivariate least squares spline approximation. Before describing this
algorithm, we briefly review in the next section how to construci such approximations.

2. Bivariate least squares spline approximation

Consider a rectangle R = {(z,y) € R? : z € [a,b],y € [c,d]} and the lattice defined
by the knots {X;}2%] and {u;}i2;, where

a=t\o<A1<...<Ah+1 =b

and

C=ﬂo<[l1<...<[lg+|=d.

A bivariate spline of order k¥ on R with interior knots {);}%, and {ui}io, is a
function s(z,y) with the properties that:

i) On the subrectangle R;; = [Ai—1, A} x[pj-1, ;] (i =1,... . h+1; j = 1,...,9+1),
s(z,y) is a polynomial of total order 2k in z and y.
ii) The functions

gt
sy’ (@) (0<pg<k-2)

are continuous on R.
A generally well-conditioned basis for s(z,y) is given by the tensor product of k**

order univariate B-splines M;(z) with knots A, (u = 1,...,hk) and N;(y) with knots
py (v=1,...,9):

h+k g+k
s(z,y) = 3 Y viiMi(z)N;(y).
=1 y=1
The least squares spline fit to the given data is the solution of the problem

2
min$ (f, LMz )N (,,,))

vi
Y or=

Equivalently, we may solve, in the least squares sense, the overdetermined system of
equations

Av=f, (1)




where v = {u.-j}',""""*"‘, expressed as a (h + k)(g + k)-vector, f = {f,}Y¥ and A
is the N x (h + k)(g + k) matrix whose r** row contains the basis function values
Mi(zr)Nj(yr), with

N > (h+k)(g + k). (2)

A solution can be found using a numerically stable method which employs House-
holder transformations. These reduce the matrix A to triangular form by means of
orthogonal transformations. Another method is based on Givens rotations. These
are particularly useful in the case of structured matrices, are numerically stable and
reduce the storage requirements.

The major difficuity that occurs in determining the least-squares solution of (1) is
the possible rank deficiency of the matrix A which depends on the lattice used. In the
univariate case, A has full rank if the Schoenberg-Whitney conditions are satisfied
(Cox, 1986; de Boor, 1978), while in the bivariate case conditions exist only for
particular configurations of the points and knots. Rank deficient matrices occur very
frequently and lead to nor-unique solutions. We can determine a particular solution
selecting either the minimum norm solution (which, however, is not invariant under
translation) or a geometrically invariant solution (Cox, 1986).

3. Knot placement

From what we have said above, a need clearly arises for subdividing the rectangie R
into a lattice that affords a good balance between the closeness of the fit to the data
and the smoothness of the fit, whilst reducing the number of empty panels.

In the literature we find results for data on a mesh and scattered data. In
the former case an algorithm due to Dierckx (1981) can be used. This algorithm
constructs a lattice in such a way as to control the above-mentioned balance.

When the data are scattered over the domain, the literature suggests methods
which are based on sequences of “trials”. More precisely, one forms an initial rectan-
gular lattice and constructs the relevant spline; if the fit is not satisfactory in some
regions, the lattice is refined appropriately (see Cox (1986)).

4. The proposed algorithm

QOur objective is to construct an algorithm which determines a suitable lattice for any
point configuration. In order that the behaviour of the fitted surface is sensible and
in particular sufficiently smooth, our algorithm is required

i) to provide a subdivision which achieves near-uniformity in the point distribution
between the mesh lines,
ii) to impose a limitation on the knot spacing.

The limitation in ii) is controlled by an index L, as described below.
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We first determine a functional relationship between L and the number of data
points N. To this end, we consider the real variable n, which coincides with N at
the points of integer abscissa, and require that the following conditions are satisfied:

lim L = oo,
n—0

lim L = constant,
n—o0
L>0 VneR*,
L'<0 VYneRt.

As a first approximation, we write
1
L= Pea+ (3)

where § and 7 are positive constants which depend on the measure u{R) of the
domain, and @ € R*. The relationship (3) must also satisfy the following two
conditions:

1) The decrement in L must not in magnitude be much larger than the relevant

increment in N.
2) When the given points are dense in the domain, L must be nearly insensitive to

variations in N.

If we consider a value n, an increment An in n and the cdrrapondjng values
L(n) and L(n + An}, we have

AL = L(n+ An) — L(n) = L'(n)An + Ry(An),

where R;(An) is the remainder from the Taylor formula. From this, for An suffi-
ciently small,

ap An

— ’ —
AL—L(n)Ans—m .

In order to satisfy the first of the above conditions, it is necessary that 0 < a < 1;
whereas, for the second, it is convenient to take @ > 1. As a consequence, a suitable
value is a@ = 1, giving

L=ps+7. @)

This conjecture is corroborated by practice. Therefore, when forming the lattice,
we shall consider (4) and the first assumption i). In order to satisfy the latter, we
proceed in the following way.

Let us think of the points as point masses and determine their barycentre. If
the points are regularly distributed, the barycentre is the centre of symmetry of the
system and its coordinates subdivide the domain into four equal and homogeneous
parts. Otherwise, the barycentre lies in the zone where the density is the greatest;
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in this case, the subdivision makes the four zones obtained more homogeneous than

any other subdivision.

The algorithm works in the following way. For a given set Iy of points P, =
P(z;,¥%) (¢ =1,...,N), we determine the point PO ¢ Iy which has the minimum
Euclidean distance from the barycentre B. We then find a circular neighbourhood
U(P'9) about P with radius r depending on the mean density of the data in the

domain R:

rzky—(Nﬁ)-.

The factor k£ depends on the point configuration. If we have some information on the
lattice, the user can assign an initial value £*. Otherwise, the following rule can be

used.
Suppose the N data points are placed on a rectangular grid as follows:

a=11<22<...<zN, = b,

c=yn <yY<...<yn, =d,

and define

hy =1z —z; = (b—-a)/(N; - 1),

hy =941 ~yi=(d—- c)/(N,, -1).

In order that the neighbourhoods cover the domain, it is sufficient to choose the

radius such that
r > \/h? + A2

Hence,

N (b-a)? (d-c)?
2wV TN S 5)

Thus, we shall thus choose an initial value k* for k satisfying (5).

Once we have determined U(P(%)), we calculate the barycentre By of the points
P, € InOU(P) and call (2B, ¥B,) the coordinates of By. We proceed by con-
sidering the set of points P; € (In ~ U(P®)) = Iy,; the algorithm determines the
neighbourhood U(P(1)), with radius r, of the point P{}) € Iy, which has the mini-
mum distance from the barycentre B. Then we calculate, as above, the barycentre
B, of the points P; € Iy N U(PWY). This procedure is repeated until there are no
more points P, remaining. If, for some P(*), we have U(P{*)) = §, this point is not
taken into consideration, and we proceed to determine the next point closest to B.

When the procedure ends, we see if (2) is satisified; if not, we repeat the procedure
iteratively by incrementing the value of k until (2) is satisfied.
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The set Ap, of the coordinates (zB,.yB,) of the barycentres B; (j = 0,...,m)
can be considered as a potential set of knots on the relevant coordinate axes, defining
a first lattice. At this point, the algorithm controls the knot spacing by considering
the sequences {zp,,...,zB,,} and {yg,,---,¥B,,} of coordinates. For any couple
B;, Bj41 consider the inequalities:

|zB,4, — =B,| > L, (6)
\yB,4, — ¥B,| > L. (7)
If (6) and (7) are satisfied, the knots are accepted. Otherwise, if one of the above
relationships is not verified for at least one of the couples B; and B;,,, we proceed

as follows.
Suppose (6) is not verified. We consider the knots

zB,_,» B, ZB,,, and zp .,

and define 7;, Zj;1 and Z;,2 to be the midpoints of the intervals {zp,25,,,] (| =
J=1,..,j4+2. If N,) and Ng,,, are, respectively, the number of points (each with
its multiplicity) belonging to the intervals (Z;,T;4] and [Z;4,,%;42], we determine
in the interval [zp,,2p ,,] the point z* for which the equality

z"Ns, = (28,4, — 2B, = ") N5,
holds. The sequence of knots on the z-axis is then modified to

-
230,...,231_1, z, 23”2,...,133,".

5. Numerical results

In this section we use an example found in the literature, namely the test function
F(z,y) = exp(~z? — y?). The function is assumed specified by a sample of values

fi=F;+¢, €& € U[-0.5 % 1073,0.5 x 103],

where U is the uniform distribution and the approximating spline is that of minimum

norm.
The error indices we have considered are

— 2 = ) = .
L.S.E._\/Ze./N. AE.=) lel/N and MAX max, le:],

where ¢; = F(z;,%;) — s(zi, ¥i)-




Example 1 Example 2
R=10,1] x [0,1] R=[-1,1.5] x [-1,1]
N = 1000 N =100
L.S.E.=.1179E - 03 LS.E.=.1091F - 02
AE=.9284F - 04 A.E.= 8577TE - 03
MAX = .4642F - 03 MAX = .3078E - 02

8. Concluding remarks

For small data sets, the algorithm presented provides good results both for data on
a mesh and for scattered data. For large data sets, our results compare favourably
with those provided by methods discussed in the literature. The comparison holds
also for computation time. Moreover, memory requirements are not excessive, so the
algorithm can be used on a personal computer and can be modified for interactive
use.
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A KNOT PLACEMENT STRATEGY FOR LEAST SQUARES SPLINE FITTING
BASED ON THE USE OF LOCAL POLYNOMIAL APPROXIMATIONS

M. G. COX, P. M. HARRIS and Helen M. JONES
National Physical Laboratory

Abstract We are concerned with the use of univariate spline functions in fitting
noisy data in the least-squares sense. When defining the linear space of approximating
functions from which our fit is to be taken, there is freedom both in the number and
locations of the interior knots. The distribution of these knots can have a profound
influence on how well the spline fits the data.

We describe an algorithm for determining an initial estimate of the number of
knots, and their distribution, from which an initial fit to the data is obtained. The
algorithm exploits in a natural way the piecewise polynomial nature of the approx-
imating function by isolating subsets of the data which are adequately described by
simple polynomials. Once an initial set of knots is known, adaptive knot placement
strategies may be used to improve this set.

Key words: Knot placement, Least squares, Local polynomial, Polynomial spline.

1. Introduction

Polynomial spline functions are widely used for fitting “noisy” data; that is, data in
which there are random errorsin the dependent variable values. In practice, such data
can arise when these values are measurements of the response of a physical system to
known discrete inputs (the independent variable values). Using the method of least
squares, a polynomial spline approximation to the underlying function represented
by the data can be constructed.

When defining the linear space of splines from which the fit is to be taken, there
is considerable freedom of choice in both the order n of the spline and in the number
and locations of the interior knots A;, j = 1,..., N. We are interested in constructing
strategies and algorithms for automatically choosing A = (A;,...,An) so that the
spline fit of given order with these knots is, in some sense, an “acceptable” fit to the

data.
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In Cox, Harris and Jones (1987) we discuss various approaches to solving the
problem of automatic knot placement. Algorithms for deriving an initial trial set
of knots and adaptive knot placement strategies are both considered. In particular,
we present there a new version of an algorithm given in de Boor (1978) which we
summarise below.

Let the data consist of the points (z;, f;), i = 1,...,m, where z; € [Zimin, Tmaz]
for all i. Suppose that we require a spline fit of order n (degree at most n — 1) to
the data and we wish to position N interior knots in (Zmin, Zmaz)- We first define
exterior knots A\j; = Zpyin for j < 1, Aj = 2,4, for j > N and then, according to this
strategy, we try to choose A;, j =1,..., N, such that

’\k+l 1 Tmax
() (217 gy = (n) (z)j1/n
S O@M e = g [T O @) e, (1)
for k=90,...,N. We assume that f, the (unknown) underlying function, belongs to
the continuity class C"[Zmin, Zmaz)- The criterion (1) gives an interior knot distribu-
tion which is asymptotically equivalent, as N — oo with maxi—o, .~ [Ak+1 —Ak| — 0,
to that obtained from solving

mjn {kéﬁifxv distys, a1 (/: sg)} . (2)

In (2), “dist[y, 2, +l]( f S:'\)” represents the “distance”, measured in the infinity norm
over [Ag, A1), between f and S:‘\, the linear space of splines of order n with interior
knot vector A. Criterion (1) is derived from (2) by replacing this distance function
by a suitable bound.

Our version of the algorithm differs from de Boor’s in that we approximate f{")
by a piecewise linear function rather than by a piecewise constant function. As a
result we hope to achieve a better, and certainly smoother, approximation. The
strategy is adaptive since the approximation to f(*) is obtained from a spline fit
to the data based on a current set of interior knots. Thus, one application of the
criterion results in this current set being updated, and the new knot vector forms the
current knots at the next application.

In order to use (1) adaptively, we need

(a) an initial interior knot vector A,
(b) a means of approximating f(*) using the current set of knots, and
(¢) a means of terminating the algorithm.

Details of how the approximation to f(® is constructed is given in Cox et al (1987).
Observe that (a) will need to be found independently of a current knot set since, to
begin with, no such set will exist. Moreover, the effectiveness of this algorithm will
depend on the quality of the initial approximation.

In this paper we present an algorithm for determining initial values for N and
Ajy j =1,...,N. The idea is to try to deduce information about the underlying
function f from simple polynomial fits to subsets of the complete data set. These
“local” fits give us “local” information about f independently of a set of interior



knots. We then use this information to construct A. We assume throughout that
there is enough data to ensure that proper subsets which adequately describe f exist.
Once an initial set of knots is known, the adaptive knot placement strategy described
above may be used to improve this set.

In Section 2 we present an algorithm which associates a local data set and a cor-
responding local polynomial fit with each point “sufficiently interior” to the complete
data set. We show in Section 3 how this local information may be used in a strategy
for knot placement. Results of using the strategy are also presented in this section.
Finally, in Section 4 we summarise the work.

2. Deriving Local Information About f

Given m data points (z;, f;),i = 1,...,m, with =z, < ... < z,,, representing an
unknown underlying function f, we show how we may associate with each data point
sufficiently interior (see later) a local data set and a local polynomial fit of order n.

Consider the it* point (z;, f;). We first construct a subset of contiguous points
taken from the complete data set, with indices centred on i, and consisting of n + 1
points for n even or n points for n odd. We regard this subset as local to the i** point.
It is assumed that these points can be “adequately” fitted by a simple polynomial of
order n. This will certainly be true in the case when n is odd since we can interpolate
the local data by such a polynomial. It is now also evident what we mean by a point
being sufficiently interior - it is a point for which this initial local data set can be
constructed.

Our next step is to increase the size of the subset by adding the neighbouring
point at each end if this can be done. A polynomial fit of order n to the new
local data is computed and Powell’s trend test (Powell, 1970) is used to assess the
“acceptability” of the fit.

The largest subset so formed for which the polynomial fit to this data satisfies
the test is taken to be the local data set associated with the i** point. The procedure
is then repeated for all sufficiently interior points.

In the use of the algorithm as described, there can be a problem, particularly
for large data sets, with regard to the time taken for its execution. This is because
we may need to compute a large number of polynomial fits (and evaluate these at
every point of the corresponding data set for use in the trend test) for each of a large
number of points.

To reduce the amount of work we use the size of the final local data set associated
with the (i — 1)*» data point as a starting value for the size of the local data set for
the i** point. This set is then enlarged or reduced depending on whether it can
adequately be fitted by a polynomial in the sense described. It is not clear whether
we can conclude that if the fit to this set of data satisfies the trend test then the fits
to all smaller subsets must also satisfy the test. But equally, if we always start with
the smallest subset and look for the first local data set to fail the trend test, it is not
clear that all larger sets must also fail the test. Thus, we believe that reducing the
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work in this way is not detrimental to the results produced by the algorithm.

The execution time is also affected by the manner in which the polynomial fits are
computed. Traditionally, the methods used to generate a least-squares polynomial
fit to data are those of Forsythe (Forsythe, 1957) and Forsythe-Clenshaw (Clenshaw,
1960). We use Forsythe’s method in preference to that of Forsythe-Clenshaw because
for our purposes it is appreciably faster.
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FI1G. 1. A subset of the data obtained from measurements of the response of an oscilloscope to a
step input function and local poly ial fits obtained using a trend test.

Figure 1 shows the local polynomial fits as produced by the algorithm for a
set of data generated by measuring the response of an oscilloscope to a step input
function. The complete data set consists of 512 points with equispaced abscissa
values but we show here only a subset of the data in order to illustrate more clearly
the local polynomials. The first diagram shows this subset and the second the local
polynomial fits of order 4 associated with these and neighbouring points. We notice
that the aggregate of the simple polynomial fits appears to be adequately describing
the underlying function. In the following section we use the complete data set in our
knot placement strategy.




3. An Algorithm for Knot Placement

In this section we show how we may use the information generated by the algorithm
presented in Section 2 to determine an initial trial set of knots. These knots are used
in a least squares spline fit to the data, and may be subsequently updated according
to (1) to give improved fits.

Suppose we compute the local data sets associated with all sufficiently interior
data points using polynomial fits of order n. Let the first and last data point in each
local data set mark the lower eztent and upper ezient, respectively, of that set. Then,
we position a knot at any point which is the lower (or upper) extent of more than
two local data sets associated with consecutive data points. In this way we derive
not only an estimate for N but also for the initial knot positions A;, j =1,...,N.

If the local data set for the i** point is determined independently of those for the
other points, then this strategy clearly gives a vector A whose elements do not depend
on the order in which the points are processed. However, we observed in Section 2
that for reasons of efficiency, we use the size of the final local data set for the (i — 1)t
point as a starting value for the size of the local data set for the i** point. Thus, the
points are necessarily processed from left to right and there is a dependence between
the local data sets for consecutive data points. A better criterion is to locate a knot
at an extent of a local data set which is greater than or equal to the extents of more
than two subsequent and consecutive local data sets. Similarly, if the points were
processed from right to left, we would use a “less than or equal to” test here.

Figure 2(a) shows the result of applying the knot placement strategy to the
oscilloscope data, part of which is illustrated in Figure 1. The data points (small
crosses) are shown together with the knot positions (vertical bars) and the fourth
order spline fit to the data with these knots. There are 70 knots and the root mean
square residual in the fit is 0.0543. We notice that in some regions there are clusters
of knots and these can cause overfitting of the data. We say that overfitting occurs
when the spline fit passes so close to the data that it begins to model the noise.

To remove the clusters we use a simple strategy which requires that each knot
interval contains at least n (= 4, in this example) data points. If there are fewer
than n points in an interval, the right-hand knot is removed (excepting the last knot
interval where it is the left-hand knot which is removed). As a result, we are left with
44 knots and a spline fit as shown in Figure 2(b). The root mean square residual in
this fit is 0.0605. The fit looks much more acceptable than that of Figure 2(a) because
the oscillations in the spline that were previously present have been eliminated or
reduced.

Finally, if we use these 44 knots to initialize the adaptive knot placement algo-
rithm (1), and cor.tinue to remove clusters of knots as they are generated, we produce
after 4 iterations the knots and associated spline fit shown in Figure 2(c). There are
42 knots here and the root mean square residual in the fit is 0.0618. Indeed, the use
of (1) has produced little improvement over the set of 44 knots. We note, however,
that the distribution of the reduced set of knots is markedly different.

Figure 3 shows the results at the same stages for another practical set of data.
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F16. 2. Automatic knot placement applied to oscilloscope data:

(a) Initial knots (70 knots, r.m.s. residual = 0.0543).

(b) After clusters are removed ({4 knots, r.m.s. residual = 0.0605).

(c) After adaptive knot placement (42 knots, r.m.s. residual = 0.0618).
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This arises from very accurate measurements of the respanse of a photodiode. The
data set consists of 1024 points with equispaced z;-values. For clarity, we have
plotted only every fifth point in the diagrams of Figure 3. A set of 79 knots is
initially generated and this is reduced to 55 when clusters are removed as described
above. The corresponding fits are illustrated in Figures 3(a) and (b) and the root
mean square residuals are 0.00280 and 0.00295, respectively. In this example, the
use of (1) gives a new set of knots which results in a very substantial improvement
in the root mean square residual. Figure 3(c) shows the knots and corresponding
spline fit after 4 iterations of adaptive knot placement. There are 34 knots here, and
the root mean square residual in the fit is 2.73 x 10~7. Adaptive knot placement has
reduced the root mean square residual by a factor of 10,000 without overfitting. We
observe that much of this improvement results from the strategy repositioning the
knots in such a way as to remove the severe oscillation that previously existed in the
“shoulder” of the curve.

4. Summary

In this paper we have presented a strategy for automatically deriving a knot vector
A to be used in constructing a least squares spline fit of given order to noisy data.
We determine subsets of the complete data set which are adequately fitted by sim-
ple polynomials. These polynomials provide local information about the underlying
function which the data represents. By considering how these subsets, or local data
sets, interact we generate initial estimates for N and A;, j = 1,...,N. With these
initial values we may then use an adaptive knot placement algorithm to produce
improved knot distributions. The particular adaptive strategy we use here relocates
knots according to the criterion (1) and removes knots to prevent clustering. The
examples we have given illustrate some of the features of our approach. For further
details and examples, see Cox, Harris and Jones (1988).
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AN ALGORITHM FOR NONLINEAR SPLINES WITH NON-NEGATIVITY
CONSTRAINTS

G. OPFER
Institute of Applied Mathematics
University of Hamburg

Abstract The problem of minimizing the exact form of the strain energy of a
“gpline” subject to non-negativity constraints is treated. Several necessary opti-
mality conditions in terms of systems of differential equations are derived. Due to
the constraints, additional boundary conditions have to be introduced at points
which are not known in advance. An algorithms is outlined, which we call a local
algorithm, which is based on only two grid points.

Key words: Curvature functional, Elastica with constraints, Global spline algo-
rithm, Local spline problem, Nonlinear splines, Non-negativity constraints, Ob-
stacle problem, Splines with constraints.

1. Introduction

In many applications, splines should not only pass through given data points
(¢,25), 3 = 1,2,...,n but should also satisfy some additional conditions which
are prescribed for the given problem. For example, if one wants to model a
density function [cf. Feller (1971, p.3)] the model is useless unless it can produce
non-negative values. A more general type of restriction is one which requires a fit
to be “visually pleasing” [cf. Carlson (1987)] and the meaning of this may vary
from problem to problem.

One approach to such a problem is motivated by physical arguments. The
curve one is interested in is regarded as a flexible ruler or beam (draughtsman's
spline) (cf. Malcolm (1977), de Boor (1978, p.67)) and thus, the strain energy
has to be minimized, of course subject to the given restrictions.

The second approach is motivated more by practical arguments. In this ap-
proach one constructs a spline directly, such that it fits all the given requirements.
This is ordinarily done by choosing additionally introduced parameters suitably.
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For splines with no restrictions apart from the interpolatory conditions, the
first approach was followed for example by Golomb and Jerome (1982). For non-
negativity constraints in connection with the simplified strain energy [ : #(t)3dt
see Opfer and Oberle (1988). For results in the case of minimizing [ {z(*)(t)}?dt
restricted to (™) > 0 see Dontchev and Kalchev (1988). Recent contributions
to the second approach are given by Rentrop and Wever (1988) and Schaback
(1989). The case where the functional to be minimized and the constraints are
all of general form is treated by Opfer (1989).

In this paper we shall follow the concept of minimizing the strain energy,
which is expressed by the integral over the square of the curvature of the cor-
responding curve, subject to non-negativity constraints. Thus the curves to be
investigated cannot penetrate the z-axis, and this type of problem may be re-
garded as an obstacle problem.

For brevity and simplicity our problem will be posed only for functions rather
than curves.

2. The Problem

Given data (tj,z;), 7 =1,2,...,.n 22, witha=1¢ <t3 <:---<t,=bandn
fixed, we require a function z € W3 with z(t;) = z;, j = 1,2,...,n, which, if
parametrized with respect to arc length s, minimizes

4
T) = IC2
f(2) /o (s)ds (1)
subject to
z(s) > 0, (2)

where & is the curvature of z and £ the length of the curve described by z. It
should be pointed out that in this setting neither the length £ of the resulting
curve z nor the interpolation conditions (which have the form z(s;) = z;) are
known in advance, since the arc lengths s;, which are the lengths from the first
point to the point numbered j measured on z, are not known beforehand.

It is mentioned in various papers [e.g. Golomb and Jerome (1982)] that the
corresponding Euler equation for the unrestricted case can be put (by suitable
transformation) in the form of the pendulum equation, with the consequence that
the minimum of the above mentioned functional (if it exists at all) is a piecewise
elliptic integral. However, very few authors use this result. One exception is
K.D. Reinsch (1981) who takes advantage of the existing procedures for elliptic
functions presented by Bulirsch (1965).

Most of the numerical work in the unrestricted case was discussed by Mal-
colm (1977). In particular, results by Glass (1966), Larkin (1966), Lee and




Forsythe (1973), Mehlum (1969), Woodford (1969) are mentioned. We are not
aware of any more recent published results.

The above setting in terms of the arc length s has the advantage of formal
simplicity; the disadvantage already mentioned is that the upper bound for the
integral in (1) and the interpolation conditions contain a quantity unknown a
priori. In this paper we have decided to use rectangular coordinates and restrict
our attention to curves which are graphs of functions.

Given z € C?[a,b), the curvature of z at a point ¢ € [a, }] is defined by

#(t)

K(z(t)) = zmw (3)

If we use the transformation

ds = /1+ 2(t)%dt, (4)

the above functional (1) reads

b v
flz) = z(t)%dt

. (LT ()7 )

By the introduction of the “spaces”

M={zeW}: =z(;)=z;7=12,...,n}, (6)
H={zeW}: =z(;)=0,j=12,...,n}, (7
Mt={zeM: z>0}, (8)

we can give the problem the brief form:
minimize f(z) given by (5) subject to z € M. 9)
For later reference we abbreviate the integrand of (5) as

z(t)?

He) = Fha S8 = s

(10)

There is one important subproblem which we term the local problem.
Local Problem. Specify problem (9), but with n = 2 and with prescribed
additional boundary conditions

z(t1) =21, #(t2) = 2, (11)
where 1, £, are any given values.

If we could solve the local problem satisfactorily, we could already set up an
algorithm for finding the solution of the general problem, which in this context
we term the global problem. The algorithm would have the form:



Step 1: Solve the unrestricted problem, and call the solution z.

Step 2: Replace the solution z in those intervals I, = [¢;,t,41] in
which z has negative values by the corresponding solution
of the local problem, by using the computed derivatives at
the endpoints as prescribed boundary conditions.

Step 3: Repeat Steps 1 and 2 by taking all derivatives at the given
knots as unknowns, with the aim of producing a C?-spline.

It should be noted that the first two steps alone already produce a C!-spline.

For the simplified strain energy f: #(t)%dt, this algorithm has been proposed
by C. Reinsch (1988) and by Fischer, Opfer and Puri (1987). These authors
show that the corresponding local solution can be computed explicitly in a very
simple and efficient manner. For this simplified case, the algorithm has undergone
extensive numerical testing by Dauner (1987) and Kroger (1989).

The local problem is a special case of the so-called Hermite-problem, in
which, in addition to the already stated conditions, we require that #(¢;) = z;,
where z;, j = 1,2,...,n are arbitrarily specified numbers.

3. Necessary Optimality Conditions

If one of the data points should fall below the z-axis, then our problem certainly
has no solution. The following assumption on the data specification is therefore
immediate.

Assumption 1. Assume M* #40, ie,z;>0forall j=1,2,...,n.

For our first result we need two more “spaces”, the definition of which de-
pends only on z € M*, namely

Hf={heH: =z+h>0}, (12)
Hf*={heH}: z-h>0}. (13)
The latter space H}* is usually referred to as the envelope or hull of z, since it
contains all those h for which || < z. It has the properties
he H}t* < —he H}, (14a)
he H}t,z(r)=0,a<7<b = h(r)=h(r)=0<h(r). (14b)
Theorem 1. Suppose that zq solves the problem stated in (9). Then

b
f'(20, ) := lim ~{f(zo +ah) ~ f(zo)} = / {Fa(za)h(t) + Fa(zo)h(t)}dt

>0 forallhe HY (a)

zo?
and

=0 forall he HEY. (b)




Proof: (a) By the definition of H} we have zo + ah € M* forall0 < a < 1.
Since in that case, by definition of zq, we have f(zq) < f(zy + ah), the assertion
follows from the definition of the derivative of f.

(b) This follows from (a), by using (14a) in connection with the linearity of
f'(z0, ) with respect to h. B

In order to proceed from Theorem 1 we choose a fixed subinterval I; =
[tj»tj+1], 7 =1,2,...,n— 1 and an h € H}* which vanishes outside I;. If j > 1
and j + 1 < n then h € W} implies h(Y(¢;) = A{O(t;4,) = 0 for £ = 0,1. By
applying partial integration, Theorem 1 implies that for all j = 1,2,...,n -1

/ " F(zo)i(t)dt = 0, for h€ HE*, and h(t) = Ofor t ¢ I,,  (15)
"
where in each interval
F(zo) = Fi(z0) - v, (16a)
v = Fi(zo ), (lﬁb)
and
v(a) =v(b) =0, (16¢)

where F is defined in (10). In order to obtain (15) we use the relation

ti+1 . . _ i1 .
/ Fi(zo)h(t) = h(t)v(t)|:;“ - / v(t)h(t)dt
t; 5
2] o ) 2]
= —/ v(t)h(t)dt.
¢
If1<j<n-—1then iz(t,-) = 0, and thus the above constant parts vanish. If,
however, j =1 or j = n then h(t;) may take any value. In this case we note the
fact that v defined in (16b) is determined only up to a constant, and this allows

us to set v(a) = v(d) = 0, at least provided that we have n > 2.
For later use we compute the partial derivatives of F:

_ —5z%2 Fo = 2z
- (1 + 22)7/2° T (1 + z2)5/2°

Theorem 2. (a) For n = 2 the solution z¢ of (9) is the linear interpolant of the
two data (t1,21) and (t2,22). (b) For n > 2, if zq solves the problem (9) and if
v is defined as in (16b) and (16c), then
(1) Fi(a) = F3(b) =0,
(i) Fz —v is linear in I = [t;,t;41], provided zq >0 in I;,
(i13) Fz — v is linear between interior zeros of Ty, and linear between interior
zeros and knots, where an interior zero of zq is a zero in the open interval

]t jrtj+1 [7
(iv) Hf(Fi — v) always has non-negative jumps at the interior zeros of z.

F; (17)

A oo £




Proof: (a) In this case the proof follows because o € Mt and f(zo) = 0. (b)
An application of a theorem of du Bois-Reymond tells us that in each subinterval
I, the expression F' is a polynomial of degree 1 in t. In addition, if 7 is a zero of
zo then 7 has to be introduced as a new knot, since we have h € H}t together
with the derivative h vanishing at 7. The remaining details of the proof follow
the corresponding proofs in Opfer and Oberle (1988). B

Condition (i) corresponds to the so-called “natural boundary conditions” of
an ordinary spline. In the case of an ordinary cubic spline, condition (i) is the
condition that the second derivative should be piecewise linear. The remaining
two conditions cover the constraints. Condition () implies that any zero of the
solution z¢9 must be considered as a new knot. The jump condition (iv) means
that the difference between the right and left derivative at a new knot must always
be non-negative.

Condition (22) reads explicitly

2z(t)/(1 + £(t)?)%/% —v(t) = At + B,  (18)
where
-523%/(1 + 22)"/% = 5.

Differentiation with respect to t yields

(2(1 + £2)zU") — 5232)/(1 + 22)7/? = A. (19)
If we differentiate once more we obtain Euler’s equation
(1 + 22){2(1 + £2)z(*) - 202329 — 55%} + 35:%2% = 0. (20)
If £ # 0 we may multiply equation (19) by # and obtain
d & 2&z(") 5:¢8° .
dt(1+a2)p2 (142252 (1a2)ye %
Thus, by integrating we obtain
(Az + C)(1 + £2)%/2 = 22, (21)

which is Woodford’s (1969, eq. (5)) equation.

The first three differential equations, valid in each subinterval and connected
by suitable boundary values can be written as first order systems which are more
convenient for computing. Equation (18) reads

& =u, (18a)
u = 0.5(1 + u2)’/2(v + At + B), (18b)
v = —1.25u(1 + u?)¥/?(v + At + B)%. (18¢)
Equation (19) takes the form
z=u, (19a)
u=v, (19b)




v = 0.54(1 + u?)¥? + 2.5uv?/(1 + u?). (19¢)
Finally, Euler’s equation (20) is equivalent to

z=u, (20a)

u=v, (20b)

v =w, (20¢)

W = (10uvw + 2.50%) /(1 + u?) — 17.5u%0% /(1 + u?)2. (20d)

In addition to these equations we have the boundary conditions (16¢), part
(i) of Theorem 2, the interpolation conditions and the smoothness conditions at
the interior knots. Moreover we have to introduce new knots 7, t; < 7 < tj41
(for some j), whenever T is an interior zero of z¢. For such points 7, we have the
additional conditions zo(7) = 0, £9(7) > 0. The latter conditions reflect the fact
that z¢ has not only a zero at 7 but also a minimum.

The implied algorithm requires the repeated solution of one of the above
sets of differential equations with additional known and unknown boundary con-
ditions. Results in this direction will be published elsewhere.
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SPLINE CURVE FITTING OF DIGITIZED CONTOURS

C. POTIER and C. VERCKEN
Département Informatique
Ecole Nationale Supérieure des Télécommunications

Abstract This paper presents an algorithm for finding a mathematical curve
approximation to a digitized contour. The whole application consists in processing
optically scanned graphic documents to store them in a data base for consultation and
manipulation. For each contour, an approximating parametric cubic spline curve, with as
few control points as possible, is determined by minimizing a smoothing criterion. The
algorithm is particularly efficient for large data sets, the number of control points always
being very small. To handle the curve, the B-spline representation is associated to a
hierarchical data structure, obtained by generating the Bézier points and subdividing the
corresponding Bézier segments.

Key words : Cubic splines, Curve fitting, Data compression.

1. Introduction

The algorithm presented is a part of a software project at our school concemed with the
consultation and manipulation of documents archived in digital form. Documents which
were not created in this form are to be converted to a compatible form. To digitize them,
we use a scanner whose resolution is 300 dots per inch. The output, a binary image, is an
array of pixels ( approximately 2400*3500 for a A4 document ) without any information
about the structure of the document. For archiving purposes, data compression is
necessary, and even run length encoded forms such as CCITT group Il or IV, used for
facsimile coding and transmitting, represent a very large amount of data and give no
information about the structure of the document. For black and white graphics an




analytical representation of contours is useful for data compression, shape description
and geometrical transformation. To deal with complex documents it would be necessary
to have preliminary processing, which is outside the scope of this paper, such as
segmentation into text, black and white graphics and half tone zones as described by Ito
and Saakatani (1982) and determination of the connected components of the graphic
zones as described by Ronse and Devijver (1984). Since we presently have studied only
very simple graphics including a single component, a minimal basic preprocessing is
necessary to determine an ordered list of black pixels representing a contour or a curve
and to convert it into a continuous boundary by vectorization. The next step consists in
finding a good spline approximation by first determining a small accurate set of knots and
then adjusting the B-spline coefficients.

2. Contour extraction and polygonal approximation

Let us recall some basics in binary image processing which are given, for instance, by
Pavlidis (1982) :
- Background pixels (white) have value 0 and object pixels (black) have value 1.
- An "object” connected component is a set P of black pixels adjacent o an edge (D-
neighbours or to a comer (I-neighbours) .

A connected component is entirely determined by its external contour and possibly by
internal ones if there are "holes".

2.1 Contour extraction
Definition : Let P be a connected component. The contours C of P are the sets of adjacent
pixels in P which have at least one D-neighbor not in P.

A contour C can be represented by a closed path that can be determined by the
following algorithm proposed by Pavlidis (1982) : "An observer walks along pixels
belony.ng to the set and selects the rightmost available until the current pixel is the initial
pixel”. This initial pixel is usually found by a top-to-bottom, left-to-right scan. The
algorithm must be applied for each contour of the set P.

2.2 Line thinning

Given the scanner resolution and the graphics attributes (pen-size) a line is scarcely ever
one pixel wide and often has interior pixels. Since the contour is adequate to describe a
filled shape but not a line, it is necessary to distinguish shapes from lines that are
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described by the skeleton of the component and its width. A maximum thickness T is set
and the contour is peeled off by removing all contours points that are not "skeletal”,
following Pavlidis (1982). This connectivity-preserving peeling is repeated at most T
times and, if during this process no points can be removed, the skeleton is obtained and
the component is considered as a line of thickness T'S T ; otherwise it is a filled shape.
Henceforth, line skeletons and shape contours will be processed as closed or open lines.

2.3 Vectorization
The next step consists in converting the discrete pixel-chain representation of lines,
possibly clesed, into a continuous very fine polygonal approximation (vectorization)
which vertices are the end points of "straight line" segments of the grid. We determine
the vertices by using the sequential method, based on the miniral area deviation criterion,
proposed by Wall and Danielsson (1984), with a small tolerance value S :
Algorithm 1:

(a) Let Mo(xq,yo) be the starting point and M, its contour successor.

Initiate the algebraic area f, of MoMgM;) t0 0. Leti=2.

(b) Calculate the algebraic area Af; of (MgM;.1M;) and the cumulative area f;=f; | +Af;.

Calculate the length L; from My to M;.

(c) if f; <S L; then increment i and repeat (b).

Otherwise 'put M, in the set of vertices and take it as new starting point.
The detection of "characteristic points” is done simultaneously. At any time we keep the
segment's general direction, as one of the 8-connectivity, and we mark the points at
which a true direction change (not temporary for a single point) is found. These
"characteristic points" are taken as new starting points rather than the last point satisfying
the criterion .

3. Curve fitting

We want to determine a parametric curve, fitted to the ordered sampled points {Pi}]iq=1
obtained 'Py the preprocessing, which can be written using B-spline basis:
Mt) = X M; B;4(t) , for te [To, Ty ] , with the number n of basis functions as
small as possible and where B; ¢ are cubic normalized B-splines .

To fit a parametric curve to a set of points {Pi}:,p any data point P; must be assigned
a parameter value u; (u;<uy<...<uy ) that we suppose to vary from O to T for sake of
simplicity. The chord-length parametrization needs more arithmetic operations than




uniform parametrization but it is more natural since the points P, are unevenly spaced and
the contour of the curve is very close to the polyline joining the points P;.

3.1 Knots determination
To determine n basis functions {B; 4}, a subdivision t;< t<...< ty,4 of [0,T] is
necessary and is automatically searched while keeping a trade-off between the closeness
of the fit and the number of basis functions. There must be as few knots as possible but
the mean square distance to the data points must be no greater than a tolerance level.
Three ways to obtain the knots placement have been compared:

- In the first method, the subdivision (t;} is determined by using the minimal area
deviation criterion of Wall and Danielsson (1984), as described above, with a sufficiently
large tolerance value S.

Figure 1: Subdivision obtained by Figure 2: Subdivision obtained by
algorithm 1 algorithm 1 used twice

The subdivision {t; }J-"=l obtained by this method is not symmetric, the "beginning" and
the "end" of the sampling do not play the same part (fig.1). To avoid this, it is possible to
use the algorithm twice, forward and back, and to calculate the mean of the two
subdivisions. The subdivision obtained by using this algorithm twice is more regular
(fig.2).

- In the second method, knots are added until, on each subinterval I=[T,,T;,;], Ej the
mean square distance of points Piel to the least-squares straight line is less than a
parameter value E ..

Algorithm 2
(a) Start with one subinterval [T}, T,] ; call M the collection of subintervals.
(b) On each Ie M, calculate the rms Ej to the least-squares straight line.
(c) If E; >E 4« then split I in two and put both pieces into M, otherwise increment 1.
The algorithm is repeated from (b) until all subintervals are processed.

The subdivision obtained with this algorithm (fig.3) is not very regular, some intervals

seem to be too small. This algorithm should be improved with a "merge" algorithm (see
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Pavlidis,1974) to merge two consecutive intervals if possible. Split and merge algorithms
produce good results but are time-consuming since they require multiple passes through
the data.
- The third method is based on least-squares fitting by cubic polynomials in X and Y.

Algorihm 3

Let S be a parameter value.

(a) Start with one subinterval [T;,T,]; call M the collection of subintervals.

(b) On each interval I e M, calculate 2 least-squares cubic polynomials (P, and Py)

forXand Y.

Calculate Dy=3; (P, (u)) - X;)? and Dy=3; (Py (u;) - Y;)2.

(c) If Dy>S or D,>S then split the interval in two and put both pieces into M,

otherwise increment 1. Return to (b).

(d) Subdivide each interval T, T;,,] into 4 to obtain the subdivision t;<t;<...S t, 4.

D W

Figure 3 : Subdivision obtained Figure 4 : Subdivision obtained
by algorithm 2 by algorithm 3

We use one of these algorithms to obtain a subdivision of intervals between two
"characteristic” points: either endpoints or points marked during the preprocessing. After
obtaining the subdivision, we add multiple (triple) knots corresponding to marked points.
Multiple knots are also added at the ends of an open curve and cyclic knots are added if
the curve is closed.

In all cases, the number of knots n+4 is much smaller than the number N of data
points P; and generally subdivisions are quite similar (fig.1 to 4). Nevertheless algorithm
3 should produce better results in case of lightly snaky data. With algorithm 1 the
subdivision is not optimal; however this method is attractive since it is less time-
consuming as shown in Tab.1.

Table 1: Time to obtain the subdivision.

_Algor 1 2 3

Time 3 seconds 6 seconds 25 seconds




3.2 Fitting a parametric spline curve

The third step of the fitting process is to determine the parametric spline which must be
close to the points Pj and "smooth”. The control points {M;}i_, are searched while
minimizing the quadratic functional: .

N
LM =X M)-PJ* +p J' (X4 (Y"1 ) de
=t A
The positive parameter 1 controls the trade-off between the sum of the distances of points
{Pi}?=1 from the curve, measured by the first term of I, and the smoothness of the
curve, measured by the integral, which is a rough approximation to the curvature.
However this functional I, involves two independent minimization problems to determine
X and Y. The solution is easily obtained (Potier and Vercken, 1985) by solving two
linear systems : Qa=zx and Qb=zy where the matrix Q is a symmetric positive matrix.
Moreover, in the case of open curves, Q is banded, whereas in the case of closed curves
there are non-zero terms at opposite corners, as shown in figure 5 (in case of quadratic
splines). The solution of both systems can be obtained by factorizing the matrix Q with a

data structure adaptated to the matrix (fig.6) and takes O(n) operations.

X X
x
x
X % _
Figure 5 : Matrix Q in cyclic case Figure 6 : Cholesky factorisation

The parameter Lt is adjusted so that the mean square distance to the data points is no
greater than a value T which may be a number of pixels. In figures 7 and 8 the value of T
corresponds approximately to a tolerance of 2 pixels. On both figures, the initial curve,
the B-spline approximation and the control polygon are drawn. The initial curve of figure
7 was designed with 9 B-splines, the digitized picture contained about 5000 pixels and
the skeleton 1139 pixels, the vectorization gave 120 segments. The fitting by 11 B-
splines, with knots obtained from algorithm 1, is very accurate.




Figure 7 : 1139 pixels Figure 8 : 781 pixels
and 11 B-splines and 20 B-splines

However we did not succeed in finding a good approximation with fewer basis
functions. However, figure 8 designed with 16 B-splines, algorithm 3 gave better
subdivision than algorithm 1. The fitting with 16 B-splines kept the initial shape but
smoothed the corners.

4. Interactive Curve Handling

This smoothing algorithm was integrated in an interactive graphics environment where
performance of the algorithms is of fundamental importance. To make geometrical
transformations on a displayed curve, the user has to identify the curve on the screen with
a cursor pointed "near” the curve. The selection is done by testing the convex hull of the
cubic Bézier composite representation of the curve obtained by the algorithm of B6hm
(1981). By applying the De Casteljau algorithm, each cubic Bézier segment is split in
two, if necessary, and this process is recursively applied. Successive splittings involve a
hierarchical data representation of the curve (fig.9).

‘ Lists of knots and control points and Min-Max box)

Transformation

Subdivision

Bé&zier 1-2

N N

Figure 9 : Hierarchical data representation
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The cubic Bézier representation of the curve can be used for printing "nicely" the curve
on a PostScript-laserprinter since the PostScript operator "curveto" adds a cubic Bézier
section to the current curve.

5. Conclusion

The fitting algorithm presented in this paper is very efficient and can easily be inserted in
graphic documents processing software. The knots determination, which is crucial, will
be developed and the knot removal algorithm of Lyche and Morken (1987) will be
compared with other methods.

Moreover it would be very useful to extend this algorithm to more basis functions such
as non-uniform rational B-splines to fit straight lines and conics.
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A B-SPLINE APPROXIMATION ALGORITHM FOR QUASI-INTERPOLATION

®
OR FILTERING.
CHRISTOPHE RABUT
Institut National des Sciences Appliquées
Toulouse, France. ®
®

Abstract We propose some straightforward modifications to the usual

B-spline algorithm for the approximation of discrete data. The modi-

fications permit quasi-interpolation or filtering of the data. We

propose a simple algorithm for the computation of "good"” nodes - a L
linear combination of neighbourhood data, with suitable coefficients

- in order to obtain desirable properties for the global approxima-

tion process. To analyse this process - and to determine the coeffi-

cients of the linear combination - we use the transfer function of

the associated filter, which is a very good tool to obtain a global o
view of the process (i.e., which frequencies of the data are ampli-

fied, or attenuated, and how much, etc.).

Key words B-spline approximation, Quasi-interpolation, Filtering,
Transfer function ®

1. Introduction

Given discrete equidistant data (x',yi), it is a common require- o
ment to determine the B-spline approximation of those data, i.e. to
perform the following algorithm:
FOR wanted x, ®

compute o(x) = }: ¥y By (%)
1

where the B, are the usual cubic B-splines, centered at LI in this
paper we will consider only cubic splines, but the ideas may be ®
extended to any degree.
The important advantage of the above computation is that the curve
so-obtained 1s very quickly determined, and follows the shape of the
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data (precisely, we have o(x;) = (¥jeq + by; + yj_1)/6. But there is

also an important drawback: such an algorithm allows no flexibility,

in the sense that we cannot force the curve to be nearer to the data,
or, conversely, we cannot use it to filter noise which may be present
in the data.

To overcome this drawback, we propose splitting up the nodes, Y] ,
of the B-spline approximation, from the data y,; for fast computation,
we will require Y? to be a linear combination of 2n+l of the Yj
placed around y; (the coefficients of the linear combination, as well
as the value of n, being chosen according to the type of result to be

obtained, see later). So, we propose performing the following
algorithm:

For concerned i

n
compute Y] = z oy ;-
j=n
For wanted x

compute o" (x) = z Y',‘ B; (x).
iez

The aim of this paper is to show some way of choosing appropriate
coefficients of the linear combination, and, in order to do so, to
present and use the "transfer function" (which is also called "atte-
nuation function" in some papers), which is a very convenient and
comprehensive’ tool to obtain a global view of the approximation
process.

To do so, we will suppose we have an infinite regularly spaced
data set (it is easy, if necessary, to extend a finite set to an
infinite one, in an appropriate way), so Vi € 2, x; = ih. Also, we
will take symmetric combinations (V j € [1, n], a?j - a?), so we will

n
ugse the equivalent form Y] = ij (62jy)i, where
j=0
(829§ = Yier - 29 *+ ¥i.q-

2. Tranfer function

2.1 Definition

Presentation The first idea is to study only the result of the appro-
ximation scheme at the data: we will look only at (o"(xi))i € z» and
not at o"(x) for x # x;. In other words, we will study the transfor-
mation T,: y € RZ — z € RZ defined by




n
Vi€EZ z; =d"(x;) = :E :: bESZkY] B(x;._ ;).
i€z -n ;
Since the values g(x;) provide information on o(x), studying this
discrete transformation will provide knowledge of the whole approxi-
mation process.

Obviously T, is a linear transformation, and the vector
y=—e, = (eZiﬁak)kez (here i2 = -1) is an eigenvector of T,.

Definition Let us call H,(x) the eigenvalue of the above transforma-
tion T,, associated with the eigenvector e,. The application
H,: & — H,(x) is called the "transfer function" of the filter T, -

H, is a real-valued function which is even and periodic (of period 1l/h).

Remarks: By definition, H (x) is the coefficient of amplification of a
(co)sinusoidal signal of frequency a. H,(0) is the coefficient of
amplification of constants (we will always require H,(0)=1 !).

As (ey ), R are the only eigenvectors of T,, it is understandable
that the set of eigenvalues (Hn(a))a €ER - i.e. the function H,- is
indicative of the whole transformatjon T, .

As a particular case, if V o € R, H,(x) = 1, then T, 1is the identity.

2.2. Use of transfer function

Evaluation of H,: theorem
Let H, be defined as above.
Let bl,, = 0 . Then
n+l
Hy(a) = b) + > (b + bf.,/6)(-4sin?mah)k;
k=1
The proof is q:i;e easy: since V y € ﬂz,

T, (y) = by + z (b + b_,/6)82%y; so if g is the elementary filter

k=1
y — Szky (whose transfer function is G(a) = -Asin?ﬂuh),
n+l n+l
T, = bJg + E_:l(b: + b0 ,/6)g%, and so H, = b} + kzl(bg + b0, /6)68.

Error majoration: theorem

Let g and h be two filters, with respective transfer functions

d H.
G an h

g
Let y — 2 and y — 2’




For any periodic function f of period P, let f1, = JI;(f(x))zdx.

2 ' '
If y € 81 , lz-z 'loog iz-z II‘2 < IIG-HIIwIIyllz.
Ify€e ¢, Hz-z'll“,S llz-z'll2 < HG-HIZ.IyIl1.

3. Choosing the coefficients

Of course, the actual values of b? will determine the properties of
Ty,
to present some criteria in order to determine interesting values of
b?. To do so, having chosen a transfer function G, we want to deter-

and so of the approximation process. The aim of this section is

mine b? so that the associated function H, is as close to G as pos-
sible (if we want to quasi-interpolate data, we choose G = 1, if we
want to filter data as much as possible, we will choose G(0) = 1,
G(ax) = 0 for x = 0).

3.1. First criterion: truncated development

Definition The b? are chosen in order that the first terms of the
limited development at some point &, (for example oy = 0) of H_
coincide with those of G; so, if G is written as

G(a) = 2 ¢, (-4 sin’mh)X, we obtain (o, = 0):
keN

by = <
i=1,...,n: b} =¢c; - b} ,/6
j3n+l b, =0

J

For quasi-interpolating data (G = 1) , we obtain
Vk € [0,n], bl = (-1/6)*

For a high-cut filter (G(0) = 1, Vk € N, Gt (1/2h) = 0), we obtain:
n
Yk € [0,n] , b] = (1/6)% (e Wk € [0,n] , a} = (mk](l/z.)").

Error majoration: theorem
Let n €N
Let V§ € (0,n] , b} = (-1/6)! ; V¥j € (0,n], B} = 0.

n
Let o"(x) = O Zbgs"y] B(x - x;).




Then V] € Z, o"(x;) =y; - (-1/6)"'(§2"*2y), .

As a consequence majorations of Io"(xj) - yjl may easily be obtai-
ned, and, in particular, 0" interpolates any polynomial of degree at
most 2n+l.

Proof: induction on n.

Figures: Every figure is provided for n - 0, 1, 2, 3, 4 and 5.
Figures 1 and 2 are transfer functions of a quasi-interpolation and
of a high-cut filter.

Figures 3 and 4 are o" for some data: (the O are the data; the + are
the computed nodes Y]). Figure 3 is for step data: i<0 = y; = 0,
i1 =» y;, = 1. Figure 4 is for a parametric curve: each component is
calculated separately (equidistant parameter).

3.2. Second criterion: least squares

The truncated development criterion is very interesting as the
formulae obtained are very simple and lead to a many interesting
theorical and practical results. But other criteria give better

results in most cases. An example of such a criterion is given in
this section.

3.2.1. Criterion
Looking at theorem 2.3, the idea now is to minimize |lH, - Gll,. This
{s quite simple as E, - Jo/2(G(@) - H,(@))?d is a quadratic func-
tion of the coefficients b?. Minimising E, leads to the solution of a
linear system with unknowns bf.
Of course, we can add some additional constraints, such as, for
example:
- reproducing constants: H (0) = 1 (= by = 1, b} = -1/6)
reproducing polynomials of degree < 3: H (0) = 1; H" (0) = O
(&= by =1, b} = -1/6 )
no frequency amplified: Ve E R , H (@) €1
no frequency inversed: VYa € R, H (a) > O.
Here are some values obtained for quasi interpolation (i.e.
G(ax) = 1), with the reproducing constants constraint.

n-1 bi-1 bl=-8/23
n=2  d=474 b2=1 b2--30/d b2=47/d
n=3 d=8838  bj=1 b}=-1890/d b3=-351/d  b3=--240/d

n=4  d=15443 bf=1 b}=-22776/d b3=11320/d bi-4002/d b}-1137/d
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Figures 1 to 4 :

Truncated developpement criterion.

Figure 4

Figure 3




We notice that, for n = 1, with o = (1/mh)sin '(5/8)=(1/h)0.215,
we have Max(H, (a)) = H, (%) = 1.1415 , which may be considered as
=R

amplifying too much the frequencies around ay. So we suggest to use,
for n = 1, by = -1/4 which lies between the truncated development
case and the least squares one, and gives improved results.

3.2.2. Figures:
Figures 5 to 8 are for quasi-interpolating B-spline approximation,
with the least squares criterion, each one for n -~ 1, 2, 3, 4 and 5
(for n = 1, by = -1/4)
Figure 5: transfer function H, ()
Figure 6: transfer function H,(x) (enlarging the scale around H,(x)).
Figures 7 and 8: response to the same data as figures 3 and 4.

When comparing figures 5-8 with figures 1-4, we can see how much
closer the least squares B-spline approximation is, for the same n,

to the interpolant than the truncated development B-spline approxima-
tion is.

3.3 A pretty filter
It is worthwhile to mention the filter defined by its a? coeffi-
cients (see section 1) by: Vj € [-n,n], a? =(n+1l-1j)/(n+ 1)2.

For lack of space, it is not possible to detail its properties, but we

can say that it is a very efficient and simple high-cut filter. Its
transfer function is shown at figure 9, for n = 5, 15, 45; the curve

obtained by filtering some noisy data (shares of some French company)
is shown in figure 10.

4. Conclusion

4.1. "Transfer function" is a most efficient way to obtain a global
view of an approximation process. For quasi-interpolation, it is much
better than "an order of convergence h?" (or "interpolating
polynomials of degree at most q - 1%).

4.2. We think that this algorithm may have many applications:

- in CAGD: thanks to this algorithm, an operator has no need to give
points far from the desired curve, which is much more convenient

- for closed curves: the way to extend the points in a periodic way
is obvious, and there is of course no linear system to solve.

- for filtering data: most methods need to solve large linear
systems; here we get satisfactory results with little computation.

- for d-dimensional surfaces obtained by tensor product: simple
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quasi-interpolation is very interesting as the usual tensor product
B-spline approximation smoothes the data in a quite important way,
which of course is not the case of tensor product B-spline quasi-
interpolation.

4.3. This method is very easy to introduce in existing algorithms: we
only have to add a line to compute the nodes Y{; everything else
remains unchanged!

4.4. The "modified B-splines" B" can certainly be used in place of
the usual B-splines in every application (as rational splines). So,
we can have the opportunity of one (or even many) degree of freedom.
4.5. At present work is carried out for determining best high-cut

filter by cross-validation techniques. Extensions are also being made
to thin plate splines.
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ON KNOTS AND NODES FOR SPLINE INTERPOLATION

PHILIP W. SMITH
IMSL

Abstract This paper explores the relationships among the knots, nodes, and norm
of the interpolating spline projection. In particular, we derive lower bounds for the
norm of the projection in terms of the knots and nodes. We then turn our atten-
tion to the role played by equioscillating splines in deriving the best interpolating
projector for a fixed spline subspace.

Keywords: equioscillating spline, B-spline, projection.

1. Introduction

The general problem of choosing knots and/or nodes for spline interpolation is ad-
dressed in this paper. Controlling the size of the interpolating projection is the crite-
rion for ‘good’ knots and/or nodes. We adhere to the following notation throughout
this work. The spline subspace S¥, t := ¢; < ... < t,,, is the linear span of the n
normalized B-splines By 4 4,...,B, ks Where

Bigs(z) = (tivk — ti)ltiy - - - tigsla(s — )51

If no misunderstanding can arise, we denote B; s by B;. Let 7:=71 < --- < 71, be
n nodes of interpolation. The operator

P: C[thtn+k] - St
is well defined by
(PA(r)=f(r) i=1,...,n

if and only if Bi(;) # 0 (i.e. usually ¢; < 7; < ti4x; however, equality can occur if k
knots are stacked together). Throughout, we assume that P is well defined.




The central issue is the relationship of the norm of the operator P, ||P||, to the
knots and nodes. Instead of working directly with P, we shift our attention to the
finite dimensional linear operator A : R® — R" defined by

Aij = (Angrt)ij = Bijga(ri) 1<4,j <n.
The relationship between P and A is
Pf =7 [A7 f(r));B;,
—

where f(7) := (f(11),-..,f(7a)). Furthermore, one observes [1] that

DA < Pl < Al (1)

where all norms in this paper are supremum norms on the appropriate space. The
important feature of the above inequality is that it is independent of n or t.
Recall that A is totally positive. This means that A~! is checkerboard, that is

i+§ 41
(1Y A5 20,
from which it follows that
N4~ = f|A el

where ¢; = (-1)-1, for i = 1,...,n. From the inequality (1), we see that upper and
lower bounds on ||A~!|| in terms of ¢t and  yield similar bounds on || P||.

We focus on two problems. The first problem is fundamental but extremely
difficult: Given k and 7, choose the ‘best’ knots for interpolation. We interpret this
to mean, find knots t* which satisfy

A= < llAgt)

among all competing knot sequences ¢. Perhaps it would be even more practical to
find ‘acceptable’ t** which depend on local information and satisfy

MiIARYH| < AR

for some fixed positive constant M.
The second problem is, in some sense, the dual problem: Given k and ¢, choose
the best 7 for interpolation. We interpret this to mean, find nodes 7* so that

A7 < llA7*
among all competing nodes 7. S. Demko [3] has shown that there exists 7** so that
I'A:olo" s Dk-

In fact, it has been noted by Morken [4] that Demko’s choice of nodes yields the
best set of nodes for the given knot sequence.




=

2. Estimates for |4~}

In this section, we elaborate on a technique for obtaining lower estimates for ||A~}||
that first appeared in [1). Recall [2], that if s € S¥ and

s=) bBjx
J
then (ignoring boundary effects)

s =(k_1)§; bizbio1 2 9= Bir .

J+k_l ~1;

We define the weighted difference operator V?z by
vilb; = (k- 1)—L“-
k% ° ikt

which allows us to rewrite s’ as

=S vi)b;B; i 1.

J

More generally, if we take the rth derivative then
S(r) = sz'rk)b_’BJ'k—r-
7
where we define Vg ,2 recursively by

v =V

The goal in this section is to estimate the coefficients of an oscillating spline and
to relate this information to bounds on [|A~!||. If the spline s satisfies s(r;) = (—1)"~!
for i = 1,...,n, then the {,, norm of the coefficients is |A~?||.

Theorem 1. Let k, n, t, and 7 be given. We assume that

A= An.t.‘r
is invertible and that S} € L7 [r), 7] Set e(i) := (—1)"! fori =1,...,n. Then

"A-lu > I[Ti’ cvey r.-.,.,]el !
Ai.r

wherei=1,...,n~r and
Ay = max(lVi,')ejl Pty tiak=e) N (Tis Tigr) # 0}
Proof: Let s € S satisfy

s(ri)=e;=(-1)"" i=1,..,n




Then s = 3°;a;B;4 and Aa = e. It follows that [[A~!|| = ||a|l. From the Peano
kernel theorem we have

""(r) ”[‘r.' VTidr)

[Tisee s Tigr)8 = [Tiye e s Tigr)e € m

Now

s =3 v )a;Bis-.
i

and hence
M mierd < max{IVf,'lzajl :supp Bjk—r N (7, Ty, ) # 0}

Since the matrix A is variation diminishing, we know that e;(—1)~! > 0 for all
J- It follows that there is no cancellation in the differences Vf’,faj, and hence

IV{a;1 < 1V{e;llall
Assembling the pieces yields
A.
[Fi o Tiarlel < llall 22,

completing the proof.
We mention two corollaries of this result.
Corollary 2. (de Boor [1]) Let r = 1, then

d;

A~ > J
M2 ==
and
Dyd;
Pl > .
P12 =@ =D
where

di ;= min{tjek_y — t; : (tj,tipe—1) N (7, Tig1) # 0}

The second inequality was derived by Ching-Ching Rojas, a student of ours.
Corollary 3. Let r = 2 and k = 3 with S¥ C L2,. Then

6.
A~ > s
1470 2 e T =)

{(¢j+1 —ti-1)(Gea — )t ~

1 .
(tj-f-l _ tj—l) + (t,‘+2 _ tj) . (tjth'H) n (Tl - 7':+2)}-

§; = max




3. Equioscillating Splines

In [3] it was shown that there exists a spline T = 3~ a}B;; € SF which equioscillates
maximally. That is, on [t;,2n+] there exist n points 3 < 72 < --- < 71, so that

T(r;) = (1)
IT|l = 1.

Combining this observation with the inequality
Ditfla*ll < ITHl =1

yields the following result
Theorem 4. (Demko [3]) Given n, t, and k, there exist nodes 7 so that the

matrix A := An ¢ satisfies

A7 < Dy

It is important to note that this result yields a universal upper bound (depending
only on k) for these particular nodes. Indeed, this result illustrates a dichotomy
between the dual problems of obtaining

(A) supinf 47|
(B) supinf||l477]|

Note that by Theorem 3.1, (A) is bounded above by D;, while (B) is always infinite
by Theorem 2.1 or Corollary 2.2, if k > 2 and n is sufficiently large.

As Morken [4] pointed out, the abscissae of the extreme points of the equioscil-
lating spline yield the best points for interpolation. This can be seen by setting T
to be the equioscillating spline with equioscillation points 7, as above, and letting
(1 < -+ < (, be another set of nodes. Let s € S¥ be defined by s({;) = (-1)'"?,
then

T= ZG;B,-J,

8 = EbjB',k

(s = T)G)-1)" > 0.
This means that the coefficients of s — T, which are b; — a}, weakly oscillate (i.e.
(bj — a3)(~1Y~" 2 0). But since b; and aj oscillate in the same orientation, we
conclude that

lajl < [8] j=1,...,n

hence ||a®|| < {|3]|
or |47 < 1AZ*




We now discuss the computing of the nodes r for the equioscillating spline.
First, observe that T (and hence 7) is unique, since T can be viewed as an error in
the best approximation of aj By x from the span of {Bsy,..., By x}. Furthermore, if
weset ty = ---=trand ppy =+ = t,,;k, then 3 = tx and 1, = t,43. This follows
by noting that all B-splines vanish at t; except for B, ;, and this spline takes on its
maximum at t;. Similarly, all B-splines vanish at ¢, except B, i, which takes on
its maximum at ¢,4;.

The computational algorithm is a Remez exchange algorithm, where 7! is chosen
so that A, .1 is invertible and 11 = t, T} = t,41. Currently, we choose T to be the
interior knot averages for the B-splines, that is

Citiriti

=

k-1

We then compute 3; which satisfies
si(r}) = ei = (-1

We then choose 72 to be the unique strictly increasing vector satisfying

2
W= tﬂ+1

Then 72 is substituted for 7!, and the process is repeated until convergence.
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A BASIS FOR CERTAIN SPACES OF MULTIVARIATE POLYNOMIALS AND
EXPONENTIALS

W. DAHMEN
Fachbereich Mathematik

Freie Universitat Berlin

Abstract A basis for certain spaces of multivariate polynomials and
exponentials is constructed from the polynomial pieces of so-called
multivariate truncated powers introduced by Dahmen (1980). The need
for such a basis arises in connection with certain Hermite interpo-
lation problems which were recently investigated by Dyn and

Ron (1988Ba, b). It is indicated how to compute the elements of the
basis explicitly by means of various representations of truncated
powers.

Key words: Truncated powers, Exponential splines, Interpolation,
Construction of bases, Common null space of families of differential

operators.

1. Introduction

The literature of the past few years reflects a rapidly growing
interest in multivariate interpolation problems. The numerous methods
which have been developed so far are based on a diversity of function
systems where an important role is played, of course, by spaces of
splines and polynomials.

This paper is concerned with certain spaces of multivariate poly-
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nomials and exponentials which are obtained as common null spaces of
certain differential operators (see e.g. Dahmen and Micchelli (1983a),
(1985), (1987)). These spaces play a central role in the theory of
multivariate splines on regular grids as well as in various related
combinatorial and algebraic aspects (cf. Dahmen and Micchelli (19€8)).
Moreover, they arise in connection with certain Hermite interpolation
problems that were recently investigated by Dyn and Ron (1988a,
1988b) .

However, the practical solution of such interpolation problems would
require the explicit knowledge of bases for these spaces which it seems
have not previously been available.

The objective of this paper is to construct such bases by making
use of the intimate relationship to the corresponding multivariate
splines. More precisely, it will be shown how to obtain a basis from
the pieces of certain splines called multivariate truncated powers in-
troduced by Dahmen (1980). The computation of these pieces is facili-
tated by various known representations for truncated powers.

The paper is organized as follows. In Section 2 we state the rele-
vant definitions and collect some background material. Section 3 is
devoted to the general construction of bases for the above mentioned

spaces. Finally, an example is discussed in Section 4.

2., Some definitions and background material

Let us start by recalling the definitions and some properties of certain
multivariate (polynomial and exponential) splines which will play a
crucial role in subsequent discussions. For more technical details and
proofs the reader is referred to Dahmen (1980), Dahmen and Micchelli
(1983b), (1987). To this end, let X = {x!,...,x"} be a set of (not
necessarily distinct) vectors in:Rs\{O} and let u € €n be fixed. For
convenience the (s X n)-matrix whose columns are the elements of X is

also denoted by X. Under suitable assumptions on u and X one can

then define a function Tu(- X) by requiring that
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[ fooT (xivax = [ ™ Vemxviav (1)

R R
+

holds for all f € COGRS) (where v > 2z = vlz1 +o..t VnEQ denotes the

. n . . .
standard inner product on € ). A case of particular interest is p = O.

For T(- X) to be well defined one has to assume that

X):= TO('
o ¢ [x], (2)

where [X] denotes the convex hull of the set X . If <X>,the span of X,
is all of R°, T(-

X) is easily seen to be indeed a function with

support

supp T(+[X) = <X>_, (3)

where <X> = {xv : v GIRT} is the cone spanned by X. T(-

X) can be
shown to be a piecewise polynomial of degree at most n - s,where the

polynomial pieces are separated by the hyperplanes in

Cx) = {<v>:v E€B__ (X)}. (4)
Here

Bl(x) = {vex:dimv> = {v| = 2}

and IVI denotes the cardinality of V. In general, when pu is some

complex vector one has to assume

Re uj >0 (5)

whenever xJ

belongs to X', the largest subset of X such that there
1
exists B € le |, B, >0 , i = 1,...,Ix'| with X'8 = 0, Again
+ i
T .
u(

(4) and support <x>+. In general its pieces are composed of poly-

X) turns out to be piecewise analytic with cut regions given by

nomials and exponentials to be explained in more detail below.

Specifically, one readily concludes from (1) that for n = IX] = s,
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‘where each y= occurs m;, times and Y = {yl.---:Ys} SPan53m§- Denoting

<> =]Rsv

-1
_ -1 —pe(X "x)
Tu(xlx) = x<x>+(x)|det x| e . (6)

In general Tu(- X) can be evaluated recursively. In addition,

explicit analytic expressions are available for special choices of X. st

s

The following case will be needed in the next section. To this end, let

[ROI =

e e L

H i ]

1 1 [ S
X = {y veees¥ veees¥ seeesY b

[T %

FIRVS ]
X0 0

H

-1 . . .
by u = ¥ "x the coordinates of x with respect to the basis Y one has

IV
e M

(cf. Dahmen and Micchelli (1983b))

L

Y

m,-1 m -1
S

' (X)ul ceo . (7) _

T(X’X) = X<Y>+ s )

When g # 0 note first that for any nonsingular (s x s)-matrix A:
det A|T (Ax|AX) = T (x|X)-. S_
| T, (ax{ax) =T (x|x) .

Choosing A = v ! one then easily verifies that

s
-1 K _"
T (x|X) = |det ¥Y|T (u|Yy X)) = T T j(u,|[1(3)), (8)
p H j=1 K J -
b . i
where U~ = (um1+...+mj_1+1""'um1+...+mj) and 1(3j) denotes the (1 XHH)- :
matrix with all entries equal to 1. Moreover, noting that the Laplace

m, ;
. . . j J -1
1(3)) is given by Hizl(ui +A) 7,

transform of each factor Tuj(-

j each univariate factor in (8) is a con-
volution of the functions t° e-uit_ Defining D f=%° .Y, 3 na
+ y j=1"3 9x,

denoting by uNj the element in Cn-l obtained from u by

A >-ui, i=1,...,m

discarding uj it is also not hard to show that

X) =T j(°|x\{xj}). (9)

(hy *+ DT, (- o~
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Many of the properties stated above indeed follow from (9). In parti-

cular, setting
Y(x) = (Ve x: <> #R°},
a repeated application of (9) yields,in view of (6), that
(M ey (1, + Dv))Tu(x4X) =0 (10)

for all v € Y(X), provided that x does not belong to any of the cut

regions in (4). Hence Tu(- X) belongs locally to the space

' Sy . i =
Du(X) = {f €ED'R) : Toey ity * D £ 0,Vv € V(X)}.

where D'aRs) denotes the space of Schwartz distributions onIRs, The
fact that Du(x) is finite dimensional is a consequence of the follo-

wing more general result.

Theorem 1 Suppose that for X as above {Lv}V€X is a family of commu-

ting endomorphisms on some linear space S . Setting

K(X) = {f € s: (IIVEVLV)f =0, VEYX]},

one has

dim K(X) < I

< Tyep_(x) dim K(Y) . (11)

Theorem 1 is a special case of Theorem 3.1 in Dahmen and Micchelli
(1987). Moreover, conditions are given there which ensure that equality
holds in (11). Specializing these facts to the case at hand gives

dim D (X) = iBs(X)l (12)

independent of U € c” .
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1 s g
Defining for ¥ = {x ~,...,x "} € BS(X),
u, = Y'Tuy ) (13)
o
where hy = (uil,...,uis) » the common zeros of the polynomials
ﬂvev(x « v+ uv) » V€ Y(X) , are the points - u, .Y € BS(X). Hence
ocne expects t'at Du(X) is spannel hy functions of the form
exp{- u, - x}p(x), where p(x) is souwe polynomial. More precicely, let @
us call any two elements Y , Y' € BS(X) equivalent if and cnly :f
uY = uY, and let Ej +» J =1,...,m , denote the corresponding equiva-
lence classes with representers Yj € Ej + 3 =1,...,m . Moreover,
define for any Y € BS(X) ®
X, = {ze€x:2z . u, = uz},
i.e. YC xY so that <XY> =IRS. It is pointed out in Dahmen and @
Micchelli (1987) and Ben~Artzi and Ron (1987) that when pj,i’
i= 1,...,2j + 1s a basis of DO(XY.) then the collection of
functicas J
®
{exp (- a, x)pi,j(x): i= 1,...,Zj y 3= 1,...,m} (14)
J
forms a basis for Du(x).
The spaces DO(X) ’ D“(X) piay a fundamental role for the theory of [ ]
box or cube splines and exponential cube splines (cf. Dahmen and
Micchelli (1987), de Boor and HO1llig (1982/83)) leading among other
things to interesting implications concerning related combinatorial
and algebraic problems (see Dahmen and Micchelli (1988), (1987;). More- ®
over, certain interpolation problems were recently shown by Dvn and
Ron (1988a), (1988b) to have unique solutions in these spaces,
To make any practical use of these results requires the determinatior. of
appropriate bases for these spaces. In view of (14) this reduces to |
constructing ror any X a basis for DO(X). Since we will be mainly
concerned with this space we will henceforth drop the sub-
- o - 4
;ﬂ
e e "
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script 0. It was shown by Dahmen and Micchelli (1983a) that D(X)

contains only polynomials. In fact, one has the inclusion

s s _
Moy ®) S0 €1 @), (15);

where d(X) + 1 = min{|v|:V € Y(X)} and HkGRs) denotes the space of

all real polynomials of total degree at most k on:ms. Although the
dimension of D(X) is known precisely, its structure is generally rather
complicated. For instance, when s = 2 , x={(1,0),(1,0),(0,1),(1,1)}, f
one easily verifies that {1,x,y,x2,y2 - 2xy} is a basis for D(X) in !
this case. However, in general, when more directions are involved or
when dealing with more than two variables no general recipe for con-
structing a basis seems to be known. Exploiting the intimate connec-
tion between the space D(X) and certain spline spaces a general

strategy for constructing a basis for D(X) will be derived in the

following section.

3. A basis for D(X)

It was pointed out by Dahmen and Micchelli (1983a)and deBoor and HOllig
(1982/83) that when X st\{o} the space D(X) is spanned by the trans-

lates of the cube spline C(+¢{X). If, in addition,X satisfies (2) then

C(+|X) is related to the truncated power by

C(- X),

X) = VXT('

where Vyf(-) = f(¢) - f(¢« - y) and for v € Vv, va = VV(VV\{V}

appropriate pieces of multivariate truncated powers should be expected

f). Hence

to form a basis of D(X). It will be shown next that this is indeed
the case even for arbitrary X c R-N{0}.

Note first that replacing xj in X by cxj for any ¢ € R will

leave D(X) unchanged. Thus,assigning appropriate signs to the elements
of X , we may assume without loss of generality that X satisfies (2) so

that T(-|x) is well defined. Moreover, upon rescaling the xi if

-

s o 4

v waw oFe U e

iy by
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necessary we may assume throughout the following that

<xi> = <x7> implies X' = % . (16)
: s -
When IXI = n = s there is nothing to prove since D(X) = ﬁOaR ) i
This suggests proceeding by induction on |X|. Suppose that for some -
X , [XI =n>s one has already determined a basis for D(X). Further—:”

more, suppose that .

-+

N

i
X' =x U {y} ‘

I 0D

also satisfies (2). Then, defining
Aixly) = {y € 65—1(’” :{yl U YE Bs(x')} ,

one has

1B x| = JAin | + [B_x)]. . -l

Thus it remains to construct N:=|{A(X|y)| additional linearly indepen- -~
dent elementsg in the quotient space D(X')/D(X).

The construction of these additional polynomials will be
based on an appropriate ordering for A(xo|y),where xo € X is a maximal

subset of pairwise distinct elements in X,

To this end, S = {Sj :j =1,...,L} will denote a fixed maximal .
sequence in A(xoly) such that the cones Cj = <Sj u {y}>+ satisfy ‘i

Cj\ui<jci £ a. (18)

Without loss of generality one can assume that no element of S can be written'
as the union of essentially disjoint cones of the form <YlJ{y}>+,Y€.A(xoly).

In fact,if sucha cone C belongs to S at least one of the cones C' con-

tained in C cannot belong to S. Swapping the corresponding elements

Y,Y' of A(xoly) would preserve (18) for a sequence of at least the same
length L .

i
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%



The following information about the elements of A(Xoiy) which are

not contained in S will be useful.

Lemma 1 For every Y € A(Xoly)\S there exists a subset H of § such that

<> < Ul<s> :s € H},

L.

'
PR VA

. 1 i,e, <Y> =<8> , SEH.

t
1O U e

Proof Let j < L be the smallest index such that

{

13

c=x<ly}uy> cu (19)

. _.C.
i<y i’
i.e.

f C\Ui<jCi ¥0. (20)

- In particular, this means that

= ~
K = <y> Ui<jCi @
and K < cj . If K intersects the interior of Cj one easily concludes

" that
Cj\((ui<jci) uc) #¢ .

In view of (20) this implies that inserting Y between Sj_ and Sj still

1
-.- provides a sequence satisfying (18) and thus contradicting the maxima-

lity of S. Hence 1<§_<sj>+ which means <sj,>=<Y>. Let V€ SJ.\Y. Clearly

i e

<3 <v> < ul<l{v} U (Mz}h)> :2z € Y}. Since every <v> ,V € A(xoly) , is

.~ covered by (s - 1)-cones <s>+ . S €S, the assertion follows.

3

An immediate consequence of Lemma 1 is that S = A(Xoiy) if the
vectors in xozare in general position. In particular, this is the case
for any X €IR™ satisfying (2).

_ Now let G denote the (possibly empty) set of all YESA(xoly)\S such

&

@
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that the highest index j of a covering H for <Y>+ given by Lemma 1 is

assmall as possible. Fixing any ordering for Gj and inserting Gj bet-

ween Sj and Sj+1 establishes an ordering for all of A(Xoiy) which will

be denoted throughout the sequel by A(xoly) = {Yj :3 =1,...,M}. The

corresponding cones <Yj U {y}>+ will again be denoted by C..

The role of A(Xofy) with respect to the full set A(Xfy) becomes

clear when considering the equivalence relation

Y~v iff <y U {yl> =<vu lyl> ,v,veE Axly).

In fact, recalling (16), one easily verifies that A(x0|y) is a set of

representers for the corresponding equivalence classes E, of
i,1 i,s-1

Yj € A(xo[y) . Note that for Yi = {x R } the cardinalities

= l ) .
li ‘Eil are given by

255,01 0 Mi,sen (21)
where xl'k occurs mi K times in X . For any 1= (il,...,is_l) € =z let

Y (D) = {xl'l,...,xl’l,...,xl's-l,...,xl's_l},
where xl'k occurs exactly ik times in Yi(I) . Specifically,
Yi((l,...,l)) = Yi,while Qi will be used as a shorthand notation for
Y ({m, ,,...,m }). Let 2(i) <1 be the largest integer such that
i i,1 i,s-1 -

. =& i

Yl(i)e S.Let Ai l(i)>+\Uj<l(i)<Yj>+ and define for YiE.S

H = (U{Qj:z(i) S3I<i, <> =<y A AN, (22)
while Hi = ¢ when Yi € S. Furthermore, let

Jo=T=Gseeni ) lkE{O,...,mi'k—l} yk=1,...,s-1}, (23)
so that EJit =9, = ?Eil. Finally, definingsfor I € Ji'

v(I) . = Y11I) U Hi ’ (24)

&

c@~



one is ready to construct additional linearly independent polynomials
in D(X')ND(X) . Writing briefly va = (HVEVDv)f the polynomials
P, I(x) , I€ Ji ,i=1,...,M, are defined to be extensions of

r

certain polynomial pieces of truncated powers, namely

p, _(x)

i,I =DV(I)T(x.X'),x€(C

i) Vi< ()€5’

The main result of the paper may be stated as follows.

Theorem 2 Let X , X' = X U {y} satisfy (2) and let P, | be defined

’

by (25). Then for any basis B of D(X) the set
B U {Pi,I:I € Ji p 1= 1,.0..,M}

is a basis for D(X').

Proof Note that in view of (21), (23) there are exactly

M M
r |Ji=5% JE | =]Ax|ly]| =N
- i . i
i=1 i=1
functions Pi I° In view of (12) and (17) it remains to show that the
’
Pi I represent linearly independent elements in D(X')/D(X).
’

To this end, recall from (9) that for any V < X',

DT (- |X") = T(e[X'"\WV) . (26)

Since D(W) < D(X) for W < X,(10) readily confirms that

Ien(x') , 1 €7, ,4i=1,...,M. (27)

P
i, i

Next observe that for x € (C c.)n Ci'

201y Vi< (1)

nc,. (25)
i

DI BV
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L)
. —~
- .
} ®
= v
DNYi>Pi'I(x) DNYi>DWI)T(xix ) °
, L&
= T(x|{{y} U (x N <Y >)\(D)) . _
By definition (24) of V(I), the set (X N <Y >)\V(I) still contains some ' °
element of A(X|y) while also (cf. (3)) .-
42
j c< |
c,n (Cz(i)\bj<2(i)cj) c<{y}u (XN <Y >)\(I)>, 1
. [ He °
: di
B = supp T(-I{y}U((Xﬂ<Yi>)\v(I)))_ 119
e '7\(\[
Hence DX\<Y;>P1,I does not vanish identically. But since X\<Yi>€ V(x), :i
this means that o °
pi'IED(x) Py TE€J =1, M, (28) -
~ So, in view of (27), (28), it remains to confirm the linear indepen- N o o
" dence of the Pi I in D(X')/D(X)., To this end, the following observation 1~
’
is useful. w0
Lemma 2 For i = 1,...,M , M = lA(xoly)l , let -
@
i o
wi={y}UV(m),
i . .
where m~ = (mi,l""'mi,s-l) . Then the functions DX'\wipi,I , 1€ Ji . - .
are linearly independent.
Proof Suppose
- . : o
ZIEJ.CIDX'\W pi,I(X) =0, x €ER",
i i
By definition (25), (26) and (9) this implies
| ‘ *
ZI€JiCIT(x Wi\V(I)) =0, x € (Cl(i)\uj<2(i)cj) n Ci .
- @
i B '




' :
1O 0 de

Proof Note that for fixed i and x € (C

By (24) one has

{Wi\V(I) : I € Ji} = {{yr v Y, U Y, (I') :I' € Ji}.

Hence the summands T (- iwi\v(I)) , I € Ji , range over all different

products of the form (7). Since these functions are obviocusly linearly

independent one concludes c; = 0, 1Ic¢€ Ji . This completes the proof

of Lemma 2.

Next suppose that for a given basis {Qj:j =1,.0., EBS(X) |} of D(X)

B _(x)|

S _ s
zl:=1 ZIGJiCi,IPi,I(") +Zj=1 anj (x) =0, x €ER™ .

Since x'\wkE Y (X) one also has for any k < M,

£

i=1 ZIEJiCi,ID

S
x'\kai,I(X) - O r X €]R .

Lemma 3 For any Il € Ji , i » k,one has

s
DX'\kai,I(X) =0, x€R .

pii) Ve )€y 0 ¢

Dx'\wkpi,I(X) = DV(I)T(xlx'\(X'\wk))

= DV(I)T(xlwk)‘

i’

(29)

(30)

(31)

Let k< i and suppose first Yi€S , i.e, 2(i) =1i. Note that in this case

C . ~<W
i

k>+#¢'

(32)

In fact, (32) readily follows from (18) and (22) when <Yi> ;4<Yk> or

when YkG S. So suppose <Y,>= <Y

k
dimensional supporting hyperplane of Ai that separates Ai and Ak By

> and kas. Let R denote an (s-2)-




(22) those Ym that contribute to Hk must be on the same side of R as
Ak’ again confirming (32). Thus, when YiE'S (30) follows from (3), (31)
and (32). The same reasoning applies if Yie.S but k< 2(i). So assume
next that £(i) <k<i. Hence <Yi>==<Yk>. From (22), (24) one concludes
that dim<wk\V(I)> < s so that (30) follows again from (3), (31) and
(26) . This completes the proof of Lemma 3.

Choosing now successively k = 1,2,...,M in (29) and invoking
Lemma 2 at each step shows that ¢, =0, IF€ Ji ,i=1,...,M . This

i,I

proves the linear independence of the polynomials Pi I in D(X*')/D(X)
14

which, in view of (12), (17) finiskes the proof of Theorem 2.

[ IS I U B S

As pointed out in Section 2 (cf. (14)) being able to construct a
basis for spaces of the type D(X) immediately allows to exhibit a basis
of Du(x) for any u € c” . Alternatively, using the operators uj+-ij

instead of ij , and (8),a basis for Du(x) could be constructed

directly from the pieces of Tu(- X) in the same way as shown above.

4. An example

In this section possibilities of evaluating and representing the above
basis functions will briefly be discussed and illustrated by an example.
One should note first that under additional assumptions on X the

above construction may simplify significantly. For instance, when X

1 1 S
has the form X={y ,...,¥ +...,¥ ,..,,ys} where Y = {yl,___,ys} spans:ms,
one has [A(xoly)l= 1. In this case (25) produces in view of the
, representation (7) the expected tensor product basis. When the elements

of X are in general position one has A(X|y) = A(xo!y) = S and the diffe-

rent pieces of T(+|V) , Vo X , form a basis of D(X) . In this case the

following explicit representation for T (.

and Micchelli (1986):

X) was established by Dahmen

1
T(x{X) = ToeT z

-1, Y n-s
a,ldet ¥| T(x' - x)" 7y (%), (33)
YEB_(X) Y <Y>

where, for Y € Bs(x).
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0

and

A similar representation can be given for Tu(-ix) when uj# 0,3j=1,..,n
(cf. Dahmen and Micchelli (1981)).

When X is in general position another explicit basis was construc-
ted by Dahmen and Micchelli (1985) without using truncated powers.

In general, one has to use the recurrence relation (cf. Dahmen

(1980))

1 n ‘ 3j
= — h
T(x|X) = —— T NTain{x"h (34)
which holds whenever
n b]
=%, A.x". 35)
X j=1 j (

A general strategy would be to select first a possibly large subset X1
of X for which a basis is easily available either via (7) or (33). The
representations for the extensions of type (25) could then be cbtained
by applying the recursion (34). The freedom in choosing the represen-
tations (35) should then be exploited in such a way that possibly many
of the previously calculated representations occur during the recursicn.
This is in fact strongly favoured by the fact that (25) always involves
truncated powers for subsets of X.

The following bivariate example illustrates this strategy. As
pointed out before, after assigning appropriate signs to the elements
of X , so that © € [x] » X, will be always in general position. Hence
S = A(Xoly) and H; = @ (cf. (22)) for all i , which simplifies, of
course, the construction.

Let X = {xl,...,xs} C]R2 where x1 = x2 = (1,0) , x3 = x% = (0,1)

x5 = (1,1) , x6 = (- 1,1) . In order to construct a basis for D(X) one

14

can follow the lines of the previous section extending step by step

bases of appropriate subspaces of D(X) . For instance, consider




1 .
x1 = {x ,...,x4} . As pointed out before the representation (7)

s 1 . .
indicates the tensor product structure of D(X ) and one easily verifies

that

1
D(X") = span{l,xl,xz,xlxz}

2 5
Setting X~ = X1 U {x"}, one has

A(Xllx5

) o= (x1), %21, 0 ()

already

(36)

1 3
One can take Y, = {x'1, Y, = {x”} as representers of the corresponding

equivalence classes in A(Xl,xs),with JI = J2 = {,m}

to (25) one has

= T(x|x9) , P (x)

Py, 0y ¥ 1, (1)

for x € c, = <{x1,x5}>+ and

) = 'r(xlxz) , (x)

P2, 0) P2,

5
for x € C2 = <{x3,x }>+ . By (34) one obtains, for x € Clr

T(xlxz) = %((xl—xz)T(xiX2\{x1}) + sz(x|X1)).

Using (34) again yields

T(xlxz\{xl})=-%((x1-xZ)T(x|x3,x4,x5)+—x2T(x|x2,x3,x4)),

which for x € C1 reduces to

x
?% T(x|x2,x3,x4) = x§/2-

Likewise,T(xlxl) = x,x,,s0 that

= T(xixz\{xl})

= T(x[xz\{x3})

. According




P (x) = l(x x2 -1 x3)
1,(0) 2 %% T3 X (37)
Similarly, for x € Cl'
x2
2 1 1 3 4 5§
T(x1X~{x })=-§((x1-—x2)T(x{x /XX )‘rsz(x;xz,x3,x4))=-E§ ’
so tha.
P (x) = x2/2
1,(1) i (38).

By symmetry one only has to interchange x, and x. to obtain

1 2
1 2 1 3
Pr 0¥ = 3%, = 3x0).
(39)
1 2
Pz'(l)(x) = '2— xl ’
so that by Theorem 2 D(xz) is spanned by the polynomials
2 2 2 1 3 2 1
1 ,x1 ,x2 ,xlx2 ,x1 ,x2 ,xlxz--§-x2 ,xle-g xl.
Finally let
x0 = x? ] {xe} ,
so that
A(xZ!xG) = {{x'}:1i=1,...,5}.
. 3 5 1
Setting Y = {x7}, Y, = {x },Y3 = {x"}, J1= {toy,(r} = 13 '
5 6 1 6
12 = {(0)} , one has c, = <{x3,x6}>+ ' C,y = <{x”,x }>+ , C3=<{x ,X }>+ .

Cl’CZ'CB clearly satisfy (18). Hence, according to (25) one obtains

) = T(x|X) , = T(x|x{x))

Pl,(O)(x Plxl)(X)

for x € ¢, ,

B

x



(x) = T(x:X) , x € C2\C1 ’

P2,0)

and

(x) = T(x{X) , (x) = T(xiX\{xl})

P3(0) P31

for x € C3\C2-

Repeated application of (34) yields

Pl,(O)(X) = (x1 + x2)4/48 . Pl,(l)(X) = (x1 + x2)3/12,

P2,(0) (x) = LB x2(x +x2)2+21—4 xlx (x + X )+E(x 1)(x2xf—-§-xi),
P3,(0)(X) = gZ(xl + x2)x§ + %(xlxg - %-xg),

P3,(1)(X) = % xg.

One easily verifies (cf. (14)) that
dim D(X) = fBz(x)| = 13.

According to the preceding calculations a basis for D(X) is then given

by the following thirteen polynomials

. 2 2 2 1.3
I RS L I I B o S S B
2 1 .3 3 3 4

x2x1 -3 xl,.xz, (x1 + x2) , (x1 + x2) .

1 2 2 1 2 1 2 1 3
38 XXy + X)) 7 ¥ o X (x4 x5) Xy - ox ) (% =3 x)
Lix, + x)x0 + e %0 -+ x)

24 %) T XXy T Ei¥ Ky T T X
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MONOTONE PIECEWISE CUBIC DATA FITTING

F. N. FRITSCH
Computing and Mathematics Research Division
Lawrence Livermore National Laboratory

Abstract This paper describes PCHLS, an algorithm for least squares fitting of
a monotone piecewise cubic function to data. It extends the piecewise cubic Her-
mite interpolation package PCHIP to situations in which the data are noisy or are
adequately represented by far fewer cubic pieces than data points.

Key words:  Data fitting, Least squares, Data reduction, Piecewise cubic approxi-
mation, Monotonicity preserving approximation, Shape preserving approximation

1. Introduction

Necessary and sufficient conditions for a piecewise cubic function to be monotonic
were published in [1]. PCHIP, a complete package for interpolation with piecewise
cubic functions and evaluating the results has been in use for many years [4]. PCHLS
is a new algorithm to do least squares fitting of a monotone piecewise cubic function
to given univariate data (zx,y), k=1,...,m. Its development was motivated by
user-expressed needs to extend PCHIP to noisy data, for which interpolation is not
appropriate, or to cases in which it is clear that an adequate approximation could
be achieved with far fewer cubic pieces than data points (data reduction).

In Section 2 is given the mathematical statement of the problem solved by
PCHLS, and algorithmic details are described in Section 3. Several examples to
illustrate the results of the algorithm appear in Section 4. Directions for further
work are indicated in Section 5.



2. The Mathematical Problem

Let [a,)] be an interval containing all of the data points z; and define breakpoints
t; so that

=1 <3< ... <lpgeg<ty=b, (1)

where nseg = n — 1. A piecewise cubic Hermite (PCH) function with breakpoints
t; has the form

1(2) = 3 [ Bi=) + ds B3a)], @)
=1

where f;=f(t;), di=f'(t;) and Hf, H? are the cubic Hermite basis functions defined
by

d

Hi(t;) = &), EH.-‘(t,-) =0; (3)
d

H?(‘j) = O,Eﬂg(tj) = 66j1 (4)

where we have used the standard Kronecker delta notation.

2.1 Least squares equations
The least squares equations for the unknown PCH parameters f;, d; are obtained by
evaluating (2) at each of the data points:

z": [f-' Hf(zy) + d; H}’(zk)] =y, k=1,...,m. (5)
=1

We note that if the 2n unknowns are arranged in pairs f;,d), f2,d3,..., fa,dn the
k-th row of the m x 2n least squares matrix will be

[Bi(24) B} (24) B(20) Bi(22) ... Hi(ze) Bi()]. (6)

Since the i-th Hermite basis function is zero unless z; € (t;_1,ti41), the matrix will
have a block structure with (at most) four nonzero entries in any row, as indicated
in Figure 1.

2.2 Monotonicity constraints
To the least squares equations (5) must be added the monotonicity constraints

fi = fia

0<8i_1di< 38—, i=2,...,n; (M
ti—ticy
0 < s;d; 5335!&-1-—,6, i=1,...,n-1. (8)

i =t



--+- data points in (#y,f,)

bl
o ox
R R
”oR

-+ data points in (¢,,f3)

>
o]
b
»

-+ data points in (#3,14)

Figure 1. Structure of least squares matrix

Here s; will either be +1 or —1 according as the approximation is to be monotone
increasing or decreasing in (%;,%;}1). These sufficient conditions for montotonicity
come from requiring that the derivatives lie in the square [0,3]x{0,3] in the mono-
tonicity region of [1). Conditions (7) and (8) constitute 4(n — 1) linear inequalities’
among the unknowns f;,d;. Each involves either one or three of the unknowns and
has a block structure similar to that of the least squares equations.

3. The Algorithm

PCHLS is given data (zx,yx) and weights w;, breakpoints t; satisfying (1), and an
array of constraint flags s;:

+1 for monotone increasing in (¢;, tiy1),
s; = 4 —1 for monotone decreasing in (;,t4,), 9)
0 for no constraint in (¢;,2;41).

PCHLS is to return PCH coefficients ( f;,d;), i=1,...,n in (2) which minimize the
sum of squares of weighted residuals

3 (welf(zx) - ) (10)
k=1

subject to the constraints (7) and (8).

! These will not all be independent. In the common case in which the approximation is to be
increasing throughout (e, 8], for example, there will be only » + 2(n — 1) constraints.



()

The algorithm operates as follows.

Step 1.
Sort the data so that z; < z2 < ... £ z,,. (This is actually done externally to
PCHLS, to avoid extra work in case the data arrives ordered.)

Step 2.
Evaluate the cubic Hermite basis functions at the data points and set up the least

squares matrix. Weights are included by multiplying the k-th row (6) and the right-
hand side yx by wy.

Step 3.
Set up the monotonicity constraints (7) and (8). No constraints are generated for
intervals in which s;=0. Redundant sign constraints are eliminated when s;_;=s;.

Step 4.

Solve this linearly constrained linear least squares problem via SLATEC subroutine
LSI, which is based on the algorithm described in [5].

Step 5.

Set “small” d;-values to zero. (This postprocessing step is necessary because the
current version of LSI often returns values the size of the unit roundoff, possibly
with the wrong sign, when one of the sign constraints is binding.)

Since the hard part of obtaining a satisfactory fit is generally the choice of
breakpoints and constraints, an interactive driver has been built on top of PCHLS. It
reads data and weights, translating absent weights to w,=1. After the user sets nseg,
it generates either uniform or equidistributed? breakpoints and automatically selects
the s; by examining the data. It performs Step 1, above, calls PCHLS, and does
Step 5. It plots the approximation, with data points and breakpoints superimposed,
after each fit. The driver allows the user to move or delete breakpoints, change sign
constraints, or change the number of segments.

4. Examples

This section contains some plots generated by the PCHLS driver, to illustrate the
capabilities of the algorithm. All fits were unweighted.

The first example is the titanium data from [3]. This is uniformly spaced and
appears to contain a moderate amount of noise. Figure 2(a) uses nseg=7 with all
default settings and is clearly a poor fit. Adjusting the positions of breakpoints
3-5 and setting s;=+1 in the first four intervals, ~1 in the last three, yields 2(b).
Changing s4 to zero improves the RMS error from .0026 to .0018 (maximum relative
error from 8% to 5%). (See Figure 3(a).) Deleting the second breakpoint has

? Same number of data points in each segment.

€%
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(3) (b)

Figure 2. Two fits to titanium data. (a) The result with all default settings. (b) The result after
adjusting middle breakpoints and constraints.

virtually no effect on the result, as indicated in Figure 3(b). In Figure 4 this curve is
compared with the PCHIP interpolant. The latter has 2m=98 parameters, whereas
the PCHLS fit has only 2n=14, so we have smoothed out the noise and achieved a
data reduction factor of 7.

The second example illustrates the use of equidistributed breakpoints. The
assumption here is that if the data are not uniformly spaced, then the sample rate
was dictated by the behavior of the phenomonon under study. This is certainly the
case with the potentiometric titration data from [6]. In figure 5(a) is the PCHLS
result with seven equidistributed breakpoints. This has 2n=14 parameters and an
RMS error of 18 (maximum relative error 1%). It looks much the same as the PCHIP
interpolant in Figure 5(b), which has 2m=42 parameters.

5. Further developments

The most obvious improvement needed would be a constrained linear least squares
solver that could take advantage of the sparseness of the problem. The least squares
matrix is m X 2n but has only 4m nonzero elements. If ncon < 4(n — 1) is the
actual number of constraints, there will be fewer than 3ncon nonzero elements in
the ncon x 2n constraint matrix. While the wasted space is tolerable in most of
the problems on which PCHLS has been used to date, it will be prohibitive if the
algorithm is to be extended to bivariate data.

The present automatic constraint setting algorithm is very primitive. It might

ﬂ.\- [l

[ g




1.0
1.4
1.0+

B} . ] 1.0

semax = 6.00¢-02. remax = ¢.940-02, ruserr = 1.70e-92

(a)

l
1.0
1.9
1.9
A \
M l
T T T g
LI N K] )

semar 5 §.03¢-02, remax = 4.98e-02. rmserr = |.00¢-02

(b)

Figure 3. Two minor adjustments. (a) Removed constraint in fourth segment. (b) Deleted first

interior breakpoint.
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Figure 4. Comparison of the latter curve (a) with the PCHIP interpolant (b) to the titanium data.
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Figure 5. Two approximations to potentiometric titration data. (a) The PCHLS fit with n=7 and
equidistributed breakpoints. (b) The PCHIP interpolant.

be improved by doing local least squares fits of straight lines to the data in each
breakpoint interval.

Because the most tedious part of the fitting process for a user is adjusting
the locations of the breakpoints, work on automatic knot placement, such as that
reported by Peter Harris at this conference (2], might be a valuable addition to the
PCHLS driver.

The author has had good results on some problems by adding convexity con-
straints to the monotonicity constraints provided by PCHLS. This modification
comes closer to providing a true shape preserving data fitting algorithm.

Another modification under consideration is the addition of a term to the ob-
jective function to reduce the size of the second derivative jumps at the data points.
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DIRECT AND CONVERSE RESULTS ON SIMULTANEOQUS
APPROXIMATION BY THE METHOD OF BERNSTEIN -DURRMEYER
OPERATORS

M. HEi.LMANN, M. W. MULLER
Lehrstuhl Mathematik VIII
Universitit Dortmund

Abstract The n-th Bernstein-Durrmeyer operator M results from the n-th

classical Bernstein operator with weights Pk if the discrete values {(%) in its
definition are replaced by an integral over the weighted function. For integrable
functions the rate of simultaneous approximation will be related to the Ditzian-
Totik modulus of smoothness. For the local rate of simultaneous approximation a
generalized Voronovskaja theorem is proved.

Key words: Bernstein -Durrmeyer operators, Direct results, Inverse results, Local
direct results, Simultaneous approximation.

1. Introduction

The n-th Bernstein-Durrmeyer operator M pheE N, results trom the n-th classical
Bernstein operator with weights p nk(x) = ('k')xk(l x)? 'k, ke{0,..,n}
x €I = [0,1), if the discrete values f(%) in its definition are replaced by an integral
over the weighted function. More precisely M, assigns to a function f € Ll(I) the
polynomial M nf of degree n defined by

n 1
(Mnf)(x) = (n+1)k£0pnk(x)épnk(t)f(t)dt, x€l
These operators were introduced by Durrmeyer (1967) and first studied by

)
[0

i M .



_ L
Derriennic (1979). For the rate of approximation in the L _-metric global direct and )
- inverse theorems have been proved by Ditzian and Ivanov. Their paper contains
moreover a solution of the so-called nonoptimal approximation problem. The
global saturation problem has been solved by Heilmann.
In this paper we will derive [
a) global direct and inverse results for the rate of weighted simultaneous
approximation ||w(M f- f)(s)" s €N, of functions{€ L (I) = {glg (s) Lp(I)},
1<p< m(TheoremsB 5, 6, 7),
b) a generalized Voronovskaja theorem for the local rate of (nonweighted) ®
simultaneous approximation (Mnf -f)(s)(x), fe Li(l) (Theorem 8).
lifeL (I),s€M, 1<p<mn>s x€l, then
(s) n-s {(S o
(M 0)*"(x) = (n+1)a(n, S) 2 Pn s k(X )IP,H_S k45 OF (1)t (1)
2
with a(n,s) = r—‘?—%;;,,( 1, cf. Derriennic (1979).
Occasionally we will work for convenience with operators M glven forheL (I), °
1{p<w,n>s x€lby
n-s 1
(M, h)(x)= (n+1)a(n,8) z Pn - k(1!)];’,1_,_3,1‘_,_5,(t)h(t)dt : (2)
Evidently (M_f)(®) = M_ {(s) i1 € Ly(1). (3) o
Throughout thxs paper C w1ll denote positive constants not necessarily the same at
each occurance.
o
2. Basic properties
Foreveryn €M, k € {0,..., n}, x € I, there holds
n 1 1 ®
kiopnk(x) =1, épnk(t)dt =53D (4)
1
k . . _ k4341
2 Puk(¥) =x pn-l,k-l(x) ' (I)t p!l-l-&l,kﬂi(t)dt ~ n¥Fs+1 ) (n¥s+2)’ (5)
pac(x) = n(py 1 4 1()-py g (), (6) .
Ax)%p! (%) = (k-nx)p_ (x). (7)
(Here and in the following we put formally pnk(x) = (0 wheneverk <Qork > n.)




Using (4) and the Riesz-Thorin theorem (cf. Bergh, Lofstrém, Theorem 1.1.1) it is
easily proved that

M, il <C||h||lJ hGLp(I), 1<p<mn>s, (8)
with a constant C that is independent of n and p.

The following lemma is useful in connection with estimates for the moments

M, (t-x)(x), meM_.

Lemmal Letmé€N ,s€N ,n>s x€land
e n4s+1 m
Tn,s’m(x) '_ln+I§ain,siMn,s(t'x) (x) (9)
1

n-s
= (n+s+1)k£0pn-s,k(x)épn+s,k+s(t)(t -x)™dt .

With (x) = /x{T-x) we have the recursion formula

_(s+1)(1-2x
Toso®)=1 Tn,s,l(x)-gn_-{-g'-q(-?_'l’ (10)

Tn s m+1(x)

= ST ATy g 0420 Ty | () +H(4ma 1(L-20T, ()],
m € N, and the representations

m- l .
Thsoml® =, E B qm(n)[’LLl (11)

n s 2m+1(x) =(1 21) E Bl 2m+1(n)[ﬁ_)_] -21 1 ,

where the B|,2m(n) and 81,2 +1(n) are independent of x and for fixed m uniformly
bounded in n.

Proo Tn s, 0(x) and T (x) can be calculated directly. The recursion formula
follows by an argument whlch is similar to Derriennic (1979), Proposition I1.3.
Then the representations (11) can easily be derived from (10) by induction. o

In section 3 the following corollary will be needed.

Corollary 2 Foreverymelo,n>s,n23andx€lwehave
M, (2)°P(x)] <Cn (p(x) 2401, (12)

M, (6P| ¢Cn ™ K fmyP4n
where C is independent of n.



Proof Forx € [0;11-] U[l-%,l] we have (,;(x).2 S%l. Thus by (11)
n

9 1 m -1 m-i 90 o
an,s(t") H(x)| S%wizolsi,gm(“”(iy) n”“'¢Cn 2m

Forx € [%,1-%] we have [nqp(x)?']'1 Sn—'_‘-l-s-%-. Thus by (11)

) . . 4 I 9
an,r(t -x)“m(x)l S%ﬂn mp(x,)“mi£0|ﬁi’2m(n)|[n¢(x)"] !

<Cn My x)"m
The second estimate of (12) is proved analogously. o

For the two monomials €q and e, we obtain by direct computation

(M, e)(x) = 1401 , (M, e;\(x) =x+0(a") (13)

uniformly for x €  and n = «.

e
nsl

In our first global direct theorem the rate of (nonweighted) simultaneous

approximation ||(Mn{ -f)(s) || will be estimated using the second order
Ditzian -Totik modulus of smoothness. In our case the r-th order modulus of
smoothness (r € W) is given by

r = ! <pg = -
wp(f,t)p Ozzgt "Ah(pf"p ,f€ LP(I), 1<p<m px)=x{T-x), where

Ay Pi(x)h=k 50( -1)“({)f(x+(§ - k)hi(x)), whenever [x- shi(x),x+ sex)} 1
p =

and Afwf(x) = 0 otherwise.
Ditzian and Totik proved in Chapter 3 the equivalence of this modulus with the
modified K -functional

T 0y _ - ) ry 2 (r) 2ty (t)y . r
RE(8N), = it (If-gll, +t"lle°6 Il ++ N8 s g € LD}
3. Global results
Theorem 3 Let o(x) = yx(T-x), n > s. Iffe L;(I), 1<{p < m, then

M £ < L)1) pn Tyl ) (14)

with a constant C independent of n.

kw



-

Remarks (14) implies that llm||(M f f)(s)" =0 for evernyL (I}, 1<p <,

{had d

since lim w"(f(s),t )p = 0 holds true for every function of this class.
t-0

Forfe L;+2(I), 1<p < =, (14) implies that the rate of simultaneous

approximation is ||(M f- f)(s)||p = O(n'l) (n~ m) because in this case

v (f(s) -1/2 - -1)

For the proof o}) Theorem 3 we still need the following lemma which can be proved
in a similar way as Lemma 3.2 in Heilmann and Miiller (1989).

Lemma 4 Letselo,nel.n>s,ueland
luul n-s

Hy(u) = (b D] [-L [H0-t) B Py 1(X)Pg 4 g g oftHtGR
Then we have with (u) = yu{T-u) the estimate H (u)<Cn 'lv(u)g,
where C denotes a constant independent of n and u.
Proof of Theorem 3 In order to prove (14) we make use of the equivalence
2.ds) -1/2y _2/ds) -1
wP(f( A )p Kp(f( )
Using (3) and (8) we have for every g € L2(I)
M E-D < IS gl +IM, g- gu (15)
We expand g%y the Taylor formula with mtegral remainder
g(t) = g(x)+(t-x)g'(x)+Ro(g,t.x), Ro(gt,x) = I(t -u)g"'(u)du
X
(13) and (12) imply

-1
M, 8-8ll, < Con~"llgll +|Ig'||p]+||M n,sBo(& - XX

<Cn il +e7 L J+1M, (R ,xxx)u (16)
where the last inequality results from the estimate (a) in the proof of Theorem 9.5.3
by Ditzian and Totik.
Next it will be shown that
1y 2, -1
"Mn,sRQ(K»'yx)(x)"p < C4“ H(e“+n"")g"|l. . (17)

In fact it is enough to prove (17)forp =1 and p = «. Then thecases 1 < p < »
follow by the Riesz-Thorin theorem. Utilizing (12) with m = 1 the proof of (17) for

A b




P = wis the same as for (5.10) in the paper of Ditzian and Ivanov. Forp=1(17)is

derived by applying Fubini's theorem twice, then the definition of Hn(u) and
Lemma 4. This gives

1
éan,s(RZ(g' ',X)(X) 'dx

ln-s 1 t
S(n+1)a(n,8)£ kzopn_s k(x)épn+s k+s(t) | J(t-u)g"(u)du|dtdx
- b 1 ‘

1 | luul n-s
= (@+1)a(ma)]Ig"W ] 11 13- T By 4 40Py 4 ko itdxds

1

< a(n9)f1g"(0) | Hy(uM < CenLlig?g"ll < Cen Ll 4n gl
where C5 is independent of n. Thus (17) is proved. Together with (15) and (16) this
gives
o £

s)_ -Irds) s) 2 2. -1y,
<Cyif o+ O guﬁ snp;uf‘ Iy #8164 e
< OO -gll, +a gl +n g+ LI )
Taking the infimum over a.l?g on the right hand side leads to

1, =00, € SR Ty en Loy 3,

which conclué)es the proof of Theorem 3. o
We did not succeed to invert Theorem 3. Therefore we studied weighted
approximation. Qur next theorem is again a global direct theorem, but now for the

rate of weighted simultaneous approximation ||p23(Mnf _f)(Zs)"p‘ This rate will be

estimated using the second order weighted modulus of smoothness wg(f,t) 23 _on
I, whose definition is given by Ditzian and Totik, Appendix (B.1). In the proc;f we
use the equivalence of this modulus with the following modified weighted

K -functional on I

14
- 2 . 21 28 2 " 4 % " vl 23 n
= inf {[lg™ (-l +t%Ilv ™78 Il +t Np™g"ll, ; 8'€AC), (1), p™g" €L (D)}

Theorem 5 Let ((x) = Vx(T-x),n > 2s. If pz'f(%) € Lp(I), 1<p < o, then
o0, -0 <l P12 20 a2 .



For the proof the representation { 1) for (M nf)(Qs) has to be rewritten into

-2 1
)M 1) 3)(x) = (n+1): gos.a(n,z-,k)p,,,m(x)(f)pn,m(t)w(t)’*"f@’)(t)dt

provided Pst(Qs) € Lp(I), 1<p <, n>2s, where

2 2
_ [(k+s)! n-k-s)!
An2sk) = gm’ﬁslvr;[{'yn—}*%f 2
Again the most difficult step in the proof is to show that

"P%Mnﬂsa‘i’(g’ -,x)||p <Cn '1||¢2s( ¢2+n 'l)g"llp. For details of the proof of this
and the following two theorems see our forthcoming paper , where we derive similar
results for the simultaneous approximation by the general method of Baskakov-
Durrmeyer operators.

1 2% e L (D and AEP)1) 5, =00XP) 0< a5 <1 ie.

Y P
8 < a € s+1), which is equivalent to wi(s"'l)(f,t)p = O(t2a) by Ditzian and Totik,
Corollary 6.3.2, then Theorem 5 implies

||«p28(Mnf-f)(23)|| = O(n*"%). For s < a < s+1 this result can be inverted by
using the Berens -Eorentz lemma.

Theorem 6 Let ¢2’f(2°) €L (I)1¢p<a, ¢x) = vx(T-x},n > 2,8 < a < s+1.
Then ||p28(Mnf-f)(2s)||p = O(n®"?) implies wg(s+1)({,t)p = oty

Mainly as a corollary of Theorems 5 and 6 the following equivalence result is
obtained.

Theorem 7 LethLp(I),1$p<cn, @(x) = yx(T-x), n > 23, s < a < s+1. Then the

following statements are equivalent:
i) 2+ 1) = 002
(ii) 22 ¢ L (1) and ||p2’(Mnf-f)(2’)||p =0(n* %)

Especially for s = 0 we obtain from Theorem 7 the equivalence

IM_{-gll = O(n"?) = wi(f,t)p = O(t%?), which has been proved by Ditzian and
Ivanov, Theorem 7.4.



4. Local results

Derriennic (1979) proved the local convergence (cf. Théoréme I1.6)
lim(M_0®(x) = (),

n~w
provided f is integrable and bounded on I and s-times differentiable at the point

x € I. Our final result is a generalization of the Voronovskaja theorem proved by
Derriennic (1985).

Theorem 8 Letf€ L;(I), sel, £(8) twice differentiable at a fixed point x € (0,1).

i £ = & 2p
Then lim n(M_{-)*"/(x) = dx_s—"'r [p(x) (x)], where ¢(x) = Vx{T-x).

n-w

Proof Define F(u) := Zf(t)dt . Then F'(u) = £®)(u) a.e. in I and

P(x) = £)(x), F'(x) = 5+ x), Bz = €042 ),
as f(s) is assumed to be twice differentiable in x. We consider the Taylor formula

F(t) = F(x)+(t -x)F'(x)5(t -x) 2P ()4t -x) () (4 x) R(t ),
where |R(t-x)| {Cfort €l and lim R(t-x) = 0.
t-
Differentiating this formula with re:pect tot leads to
{®)t) = £+ (t-H x4 402 D@12 R(t-0) aeinl.
Together with Lemma 1 this gives

o(M_£-0(%(x) (18)

="{f(s)(x)[—(r"a nnils+'1")"1n.'-1 - 1]+f(s+1)(1)"%'a :+:+§n)+r'xli+'(si'ﬂl+l +(1-2x)
1342 1
+ Dy

[0 H2Ant ) A+ 142 o4 Xo+2)] + M, [t -0 Rl 0]

S s s
As & nni”n-i-l -1l= {]Ll (n-s+j)-j[=l (n+1+j)}.j51(n+1+i)-1

s
= -S(s+l)n"l-‘Hl(n+l+j)'1+0(n '2)

]'—‘
n,s){ntl) _, we get from (18)

and lim e

n-o




lima(M_{-0®)(x) = -s(s+ DIV 0+ D)4 w0+ D), (19)
provided that
lll_i'rurﬂln~Mu'$[g-{[(t-x)e'll(t -x)]](x):O. (20)

It is obvious that (19) can be rewritten in the form of the proposition of the
theorem.

Now we look at the remainder and prove (20) where we consider the case s > 0. For
s = 0 we refer to the paper by Derriennic (1985). Integration by parts leads to

R (x)i= n-M,  [geit-0)°Ret-x)]x)

n-s
= a(n+1)a(ns) B py oy (RI(Dpgy b o(0)-(6-5) ReE Xt

Using (6) and changing the index of summation gives
n-s

* 1 3
R (x)="(“+1)(n+s)°(n’s){kzopn-s.k(x)épn+s-1,k+s(‘)'(t"‘) R(t-x)dt

n-s-1 1
¥ kz-1p“'svk+1(x)£pn+s-1,k+s(t)'(t‘x)sﬂ(t-x)dt}

n-s
= n(n+1)(n+8)°(n»3)k i _I(Pn 5, k®) Py g k41 (%))

1
- épm_l,m(t)-(t-x)3au-x)dt ,

as wedefined p , =0ifk <0ork > n. Using again (6) and the relation (7) one
obtains

n-s
AR () = HEEUEE atn) 3 p ) g g(8)-(k41-(a-s410)

1
X épn-{.s ERTP O -x)3R(t-x)dt .
Applying the Cauchy -Schwarz inequality gives

(xR ()% C-n :glpn_,ﬂ,nl(x)-(nl-(n-s+1)x)2}

n-s

1 2
‘kz-lp“'“l’*ﬂ(‘){ ! Pn+s-1,k+s(‘)('-X)3H(t-x)dt}

The term in the first curly bracket equals ( n-s+1)g¢:(x)2 by Lorentz's formulas
given in his book, p.14. Choosing € > 0 there exists a § > O such that |R(t-x)| < ¢
whenever |t-x| < §and we obtain



-

-5+1 C 9

y . 51
R P sl T gy s ]

Oty =

Pots-1k+s-1(X 'x)ﬁd'

————

+& ] (t)(t-x)de
520 pn+s-l,k+s-1 boX
22 C
<C-n’lx) {‘ 'Tn,s-l,ﬁ(x)""}?:"rn,s—I,S(X)}
2{2,C

4

<Celx) {5 4";2;} )
where we used Lemma 1 and Corollary 2. Thus for n big enough we get

[x)?R"(x)| < Ce which gives (20) as x € (0,1). 5
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ORTHOGONALITY AND APPROXIMATION IN A SOBOLEV SPACE

A. ISERLES P.E. KOCH & S.P. NORSETT J.M.SANZ-SERNA
DAMTP Div. of Mathematical Sciences Dept. of Appl. Mathematics
Univ. of Cambridge Norwegian Inst. of Technology Univ. of Valladolid

Abstract This paper explores polynomials orthogonal with respect to the Sobolev inner
product

1 1
(fiani= [ f@a@)z+ A [ f@)()dz, A2 0.

We investig:te expansions in Legendre polynomials—it transpires that their coefficients
satisfy an explicitly known recurrence relation. Moreover, we re-interpret a result of
Althammer [1962] and Grébner [1967] on a differential relation which is obeyed by the
Sobolev-orthogonal polynomials and exploit it to derive a useful expression for the cor-
responding Fourier coefficients. These results lead to an efficient algorithm for approx-
imation by polynomials in the underlying Sobolev space. This algorithm is introduced
and described in detail, accompanied by numerical examples.

Key words: Fourier coefficients, Legendre polynomials, Polynomial approximation, Re-
currence relations, Sobolev norm, Ultraspherical polynomials.

1. Orthogonality in a Sobolev space

The theme of the present paper is orthogonality with respect to the Sobolev inner product

(fon = [ S@aadiz + 2 [ Fl2)g' (@i, m

where ) i8 a non-negative real parameter, while f and g range across the Sobolev space
W)} (the set of real functions with Lz-integrable derivatives).

Each inner product that acts on polynomials generates (e.g. by the Gram-Schmidt
process) a set of orthogonal polynomials. Disregarding normalization for the time being,

we denote them by p,(,’\), pg'\) . p(,’\) ool

=0 tm#En

1 1
N (2)plV O (2 1pM
[ @@z + 5 [ o @ (z)dz{ S0 imEr



Sobolev orthogonality has been already introduced and debated by several authors, in
particular Lewis [1947], Althammer [1962] and Grébner [1967],! in a more general setting:
Let ¢g,¢1,---,9r be L +1 given distributions (i.e. real, right-continuous, monotonically
non-decreasing functions with an infinite number of points of increase and with all mo-
ments bounded) on the real interval R. One may consider polynomials orthogonal with
respect to the inner product

L f(2)a(z)deo(z) + /,z £(2)g'(2)degr(2) + - + /,z FO(2)gD(z)der(z).  (3)

It is possible to prove easily that these monic polynomials solve the variational isoperi-
metric problem

min{ [ ¥@yigolz) + [ @)+ -+ A y<L>2(z)dm(z)},

where y ranges across all monic polynomials of given degree [Althammer, 1962]. Some
of our present results extend to the inner product (3), and they will be subject of a
forthcoming paper. In the present work we focus on the simpler (and the most useful!)
form (1).

It follows readily from (2) that the underlying Fourier coefficients of a function f are

) »)
fn(A)=(—1(‘%\))Ast=09lv-” (4)

Thus, if f is an m-th degree polynomial then f = -7, f,.(,\)ps.k), whereas for any
f € W} it is true that limp oo [|f = 2™ fa(A)pSV]|x = 0. Here || - || is the norm
induced by (-, - )a [Lewis, 1947].

A mechanism to approximate functions by polynomials in Sobolev norm is useful in
numerous applications, when derivatives, and not just function values, are important,
e.g. in spectral methods for differential equations. The standard Legendre projection (i.e.
A = 0) produces poor approximation to the derivative, which might be pointwise worse
by orders of magnitude than the underlying approximation to the function: an example
to this effect features in §4.

In §2 we introduce a representation of pS.A) as a linear combination of Legendre polyno-
mials. The coefficients, which depend on A, obey a known three-term recurrence relation.
hence can be obtained easily.

83 is devoted to a differential relation that is satisfied by ps.'\). Although it has been
already debated, in a different form, by both Althammer [1962] and Grébner [1967], we
provide both easier derivation and a different interpretation of the result. Qur approach
leads to a relationship between the Fourier coefficients (4) and the quantities

. 1
fa :=/ f(z)P"(z)dz, n=0,1,...
-1
where P{"") are the (1,1) ultraspherical polynomials [Chihara, 1978]. We produce recur-

sively the coefficients that feature in that relationship. Results of §2 and §3 are assembled
into a numerical algorithm to project functions into polynomials in W}.

1We are grateful to Prof. W. Gautschi for drawing our attention to the above references.




Finally, in §4 we present a computational example demonstrating that, given a func-
tion with “awkward” derivative, the expansion in Legendre polynomials produces poor
approximation to the derivative, while expansion in Sobolev-orthogonal polynomials
brings about good approximation to both the function and its derivative.

Future papers will address themselves to the theory of Sobolev-orthogonal polynomi-
als in a wider context.

2. Explicit representation of pS{\)

As it calls for no extra effort, we consider polynomials orthogonal with respect to the
inner product (3) with L = 1. We denote the polynomials orthogonal (in the conventional
sense) with respect to ¢g by {gn} and say that the distributions {g, ¢1} have property
a if for every m,n = 0,1,... it is true that [p ¢u(2)qm(2)de1(Z) = din{mn}- It will be
assumed henceforth that property « holds.

We seek Y0, .-,7n,0 such that

(@) = Y 1ak(A)ar(z).
k=0

(5)
Denoting ¢, := [z a2 (z)dpo(z), dm := Jr €.(2)am(2)dp1(2) (for m < n) we have

n
0= (Ps;'\)v‘Il)/\ = YnnCn + A Z 7n.kdmin{k,l}7 = 03 lv ceey R — 1.
k=0

Thus, given that C := diag{co,¢1,...,60}, D = (dmin{u})
vector, we have

n

and e, is the n-th unit
k=0

(C + AD)y = we,, (6)

where v,, = (Yn,0,Tn,15:-- ,“/,.,,,)T and w # 0 is a normalization constant, to be chosen
later at our convenience. Solution of (6) follows easily by Cramer’s rule:

[ co+Ado  Adp Adg Ady go(T)
Adg a1 + Adx Ad,y Ady a(z)
Ado Ad c3+ Md Ad
pWV(z) = @ det : :1 ! . ? .2 qg(::) y (7)
Ay Ad; Ad; tn1+ Adny gu-1(2)
| Ao Ady Ad; pY. gn(z) |

where & is, again, a non-zero constanat.
We now subtract the bottom row of (7) from the remaining rows. This, in tandem
with 5,0 = do = 0 yields

[ 1 A(dy —dg) A(dy — d3) Mdy —dn1)  @i(z) = gn(z)
0 c2 Alda - ds) A(d; - dn_1) q(z) - qn(z)
0 0 ¢ A(d3 — d,_ ~ @n
P(e) = et | - 3 (ds | 1) ¢a(z) : gn(z)
0 0 0 €n-1 @n-1(2) - gn(z)
| '\dl z\dg /\d3 Adn-l ‘In(z) y




Observe that, when performing Gaussian elimination to bring the matrix into upper
triangular form, the coefficient r, used to eliminate the ¢-th element, £ =1,....n - 1, is
independent of n. These coefficients satisfy
m-—1
,\dm—/\z:(dm—dk)rk+cmr,,.=0, m=12,...,n~-1. (8)
k=1

Our contention is that the r;’s obey the three-term recurrence relation

Tere = (Se + veA)re_y — €qre_y, £=3,4,... (9)
where
Te = C((d[_l - d(_z);
s¢e = ce_1(de —de_y);
ve = (de—der)(demy —de_2);
€ = ce-a(de —dey);

with the initial conditions

T0=0;, r = —ﬂA’ rzz_éA_—dl(dz_dl)Az_
1 c2 c1€2

Indeed, substituting (8) into (9) yields

Tere — (Se + veA)re—y + €¢re_2
-1 -2
==X {(d[_l - d(_z) (dt - E(dl - dk)rk) - (d[ - d(_g) (d[_l - Z(dl‘l - dk)rk)
1 1
¢-3

+ (de — de-1) (dt-z - (de—2 - dk)fk) + (de — de—1)(de-1 — dt—2)7'l—l} =0
1

and, since both (8) and (9) possess unique solutions, our assertion is true.

A point of interest is that, subject to consecutive d,’s being distinct and r,e, > 0, (9)
implies, via the Favard theorem [Chihara, 1978], that the shifted polynomials () :=
-—fxr”l(/\), £ =0,1,... are orthogonal with respect to some real distribution.

Next, we evaluate for future use Z{‘l rt. The identity (8) implies that

-1 -1
AY diri = —cere—ded +ded Y 1 (10)
k=1 k=1

Shifting the index by one and adding Ade_17,_; to both sides produces

t-1 -1
/\derk = —€e_1T¢-1 —de_1A+dz_1AZrk. (11)
k=1 k=1

We now solve (10) and (11) for the unknowns }:f‘l ri and Zf'l diri. Subject to dy #
dy_, this yields

ST L R R S (12)
~ A(dy — de_q) . o



. We now proceed to evaluate the expansion of ps,’\). To this end, we fix the normal-
ization constant w so that the coefficients are polynomials in A and ps.o) = ¢n. Having

eliminated the bottom row from the determinant, it follows at once that

n~1
PI(E) = ga(2) + D 7e(A)(ge(2) - gal(2)),
=1

and (12) gives an explicit expansion of ps.x) in q;’s,

n-1
P () = —oa(N)gn() + Y re(Nge(2). (13)
=1

An interesting identity readily follows from the expansion: Subtract (13) from the

corresponding expression for pf,*}l. This yields

P (2) = P(E) = —0nt1(A\)gns1(2) + (ra(A) + 0n(A))gn(2)-

However, since (12) implies that on4+1(A) = 74(A) + 0,(A), we obtain
PO(2) = P(2) = ~0ns1(A)(gnt1(2) — anl2))- (14)

Identity (14) is useful in the explicit evaluation of the ps,’\) ’s.
An example of distributions that obey property a is the Laguerre pair dpg(z) =
doi(z) = mz"e”’dz, where 0 < z < o0 and @ > —1. It can be proved that

ds = °’+31‘!' and that, for a = 0, the r,’s can be identified with Chebyshev polynomials
of the second kind.

Legendre weights do not satisfy property @ unamended. Fortunately, since, in that
case, both p\") and g, = P, maintain the same parity as n, property a is “recovered” as
long as attention is restricted to indices of the correct parity—the remaining coefficients

vanish and are of no interest! Since, integrating by parts,
1 1
[ Pr@Pi(e)z = Po(1)Pa(1) - Pa(~DPa(=1) = [ Pi(z)Pa(a)ds,
-1 -1

it follows readily that (subject to the aforementioned restriction on parity) d, = £(1 + ¢).
This, together with ¢, = 573—_1’ (9) and (13) implies that

(25]
p) = —0nPat 3 TP, (15)
=1
where 25 21
i (2+ (20 -1)(2t - 5)A)re_o - or 7T

R ta_ __ Tn=3
U,‘| = 2n41 2n-3;
2(2n - 1)A

with the initial conditions

ro(A) = 0; (X)) = =3 ra(A) = —15); r3(A) = —42) — 10572




3. A differential equation

We restrict our attention in the present section to the Legendre distribution. Let ¢ be an
arbitrary polynomial of degree < n — 3. Obviously, (p ,(1-=z )t)/\ = 0. Integration
by parts produces

[ (1= (o) ~ 29" (2) tz)de =

”
Hence, p Y /\pﬁ’\) is orthogonal (with respect to the distribution (1 — z%)dz) to all
polynomm.ls of degree < n — 3 and, taking parity into account, there exist a,(A) and
Br(A) so that the Sobolev-orthogonal polynomial obeys the oiuinary differential equation

P(z) = Az (2) = an(NEED(2) + fu(NPED(2), (16)

where the PA1"")’s are ultraspherical polynomials [Chihara, 1978).
The importance of (16) becomes apparent upon the consideration of the Fourier
coefficients. Integrating by parts we have

FllpON? = / £(=) (p0(z) = 20" (2)) dz + 2 {p' (1) £(1) - V' (-1 f(-1)}

= anfi + Bufazz + A {PN(F(1) - PV (-1)f(-1)}, (17)

where f3, := [ —llf(:r)P,(.l'l)(:c)dz, m = 0,1,... Since the values ofp,(.” and its derivative
at the end-points can be easily derived from the results of §3, it remains to provide an
explicit form of a, and 3,.

Comparing coefficients of z" in (15) and (16) yields at once

n+2

ap = —2(2—11-{-?)-0"

It is an easy exercise to demonstrate that

! 21+ (=)™
(1,1) =T J.
-/-l IJml (z)d.r_ +2 ’ (18)
‘ 20 + (=)™
(1.1) =
/_1 zP. ) (z)dz = ™) . (19)

Let n be even. Then integration of (16) from —1 to 1, in tandem with (18), yields

an_ o Bn_ '\m'
n+2+n (1).

Likewise, for odd n, we multiply (16) by z, integrate and employ (19): Since, by (17)
and integration by parts respectively,

2

1
[ s = In
-1 3

1
[ e @z = 2 (s0) - s,



w gemm ey W

we obtain

1 A '
oo ey = 2 (pW —pN
+ 2 =2n -2 (P () -pOW).

Legendre projection and its derivative Sobolev projection and its derivative

Figure 1: Legendre and Sobolev projections.
The thicker line denotes the function f,
whereas the thin lines stand for polyno-
mials of degrees 3,6,...,18.

All the ingredients for an algorithm for the evaluation of a projection of f into n-th
degree polynomials in W} are now in place: either (14) or (15) are used to evaluate
ps,f)‘s. the quantities f5, which are independent of )\, are evaluated e.g. by numerical

quadrature and substituted into (17), whereas a, and g, are also available from explicit

formulae of this section. The norms Iips.)‘)ll2 can be evaluated either directly from the
explicit form or via a recurrence relation which is omitted here due to space constraints.



The satisfaction of an “interesting” ordinary differential equation by pi.‘\) has been

already noticed by Althammer [1962], who obtained, in a considerably longer derivation,
the right-hand side in terms od derivatives of Legendre polynomials, and by Grébner
[1967], who identified it with the n-th derivative of a Lagrange multiplier function of the
isoperimetric variational problem from §1. However, none has used it to facilitate the
evaluation of Fourier coefficients. Moreover, our method yields itself to other distributions
as well. The characterization of all such distributions will be described in a forthcoming

paper.

4. A numerical example

The approach of this paper becomes valuable when we wish to approximate a function f
by its projection into polynomials and, simultaneously, to approximate its derivative by
the derivative of the polynomial approximant. Given that the derivative of f is steep, it
is only to be expected that the quality of the projection in the conventional L; norm (the
Legendre projection) deteriorates. Several computational examples show that in this case
the Sobolev projection is superior. Figure 1 displays approximants of both types (with
A=0and A= -1-%3 respectively) to the function

flz) == _1czcn,

by polynomials of degrees n = 3,6,9,...,18. It is evident that the Legendre projection
is poor near the end-points, whereas the Sobolev projection displays reasonably good
behaviour throughout the interval.
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and constrained Chebyshev polynomials is discussed for

for high degree polynomials.
.compare favorably to the Remez algorithm.

Key words Constrained Chebyshev polynomials, Chebyshev
economization, Remez algorithm

1. Introduction

curves and surfaces.

Eand Hermite bases) and in their maximum degree (three,

40
39
~Q
36
Abstract An algorithm based upon Chebyshev economization Z
producing low degree piecewise polynomial approximations 2
The method is shown to :2
g
21
i
The majority of European and Asian computer-aided design fb
(CAD) systems use parametric polynomials to represent 3D i
These systems differ in their {;
internal representation of polynomials (power, Bernstein, 12
M
: P10
seven, nine, fifteen, and twenty-one). In order for these
: 3
systems to exchange geometric data, representations must -
occasionally be altered, and/or degrees must be reduced. f
The numerical stability of altering representations has 5 3
'been recently investigated by Heybrock (1987) and Shearer i :
Pt

e




T

(1988). In this note we are concerned with the problem of !
degree reduction. :

In general, a high degree polynomial will be E
approximated rather poorly by a lower degree polynomial, |

and hence piecewise or spline approximates are required.

t

|
We shall describe a piecewise polynomial construction which

'is recursjive, is uniformly near-best, controls geometric
continuity, and is relatively jnexpensive. The
:construction is compared with the Remez algorithm.

2. Constrained Chebyshev polynomials ;

Lachance, Saff and Varga (1979) introduced the collection
of constrained Chebyshev polynomials as a solution to a
minimax problem with Jacobi-type weights. These
polynomials, denoted by Téa'ﬁkx), are the unique monic
polynomials which are extremal for ;

Problem 2.1 For each triple of nonnegative integers }
(m,a,B), determine :

minimum maximum (1-%)%(1+x)P|x® - g(x)]|.
gewy_,  -15xs1

'Here, ¥, denotes the collection of real polynomials of
degree at most m, and wx_; = (0).

/ These constrained Chebyshev polynomials are a proper
‘generalization of the classical Chebyshev polynomials (of
ithe first kind) since zm-lTéo'O{x) = Tp(x). Most CAD
;systens parametrize curves on the interval (0,1]. We
'shall do the same, and introduce more convenient notation
Efor the constrained Chebyshev polynomials on this intervalj

|

|

fngginigign_le For each pair of nonnegative integers
(m,a), with m 2 2a, the constrained Chebyshev polynomials
;arc defined by

[
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I

Csy = 2™ {8 0Yas-1) = % (s-1)%(s™TET 4 o0 ) |

E, (= max IC:(s)I.

s€[0,1) |

Thus m denotes the degree of the polynomial and «a
denotes the order zero at the endpoints 0 and 1.

3. The Construction

3

 Let P(s) € 7. S€[0,1], denote a vector-valued polynomiaq
. of degree n in R> and let E denote a prescribed !
' tolerance. We wish to construct, within this tolerance, a

: visually smooth piecewise polynomial approximate to P(s) !
' of degree m. We do so applying Chebyshev economization

I
I
i
|

|

: control geometric continuity. A pointwise bound on the

)
i

L

(CE) in a compnnent-wise manner.

)

Qe N
OO OO

49

i 29

Let k = n - m, and define the sequence of polynomials ]28
‘Pi)i-l by |26

Pi,y(8) = Py(s) - zi"_ﬂsu CR_i(8), i=0,...,k1

fwhere Py(s) := P(s). The use of the constrained Chebysh

polynomials was suggested by Lachance (1988) in order to

error between the original polynomial and the final
approximate Py (s) is given by

I2(s) - By(o)lg S \Eo 1Ppe(8) - Py(o)lg
k=1 (n- } i

- S > -

i=0 %n-i)! E n i

where I'IE denotes the Euclidean norm in R3. Clearly,
if the above error exceeds the prescribed tolerance E,

— N WU~ O
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then the approximation is unacceptable. In this event thez;
original curve may be partitioned into two or more pieces}ii
the pieces reparametrized to the interval (0,1]; and then -
the construction may be applied to each piece (see Shearerd

(1987)) .

R S

| ol

Since there is no a priori indication that the final Zg
error will be satisfactory, the difficulty that arises issz

~ how one should break up the original curve. Simple '25
 bisection leaves two polynomial curves which must be fjé
approximated, again with no prior knowledge that the | 39
reduction scheme will be successful, perhaps leading to aigg
further refinement of P(s). A more efficient approach is 3¢
to force the errors at each stage to fall below some gi

threshold, say 17

-t '_k ).
IPi,1(s) - Pi(s)lg = Ip{" oy B2, < 2' 7Kg, 20

n-i)! 29
28
for 0<i<k~1. With the stepwise errors so bounded, the zg

accumulated error will always be less than E. 1If the !55
stepwise error should exceed this bound at any step, then: >
the polynomial P;(s), instead of P(s), can be split and' 22

. reparametrized into P;(s/2) and P;((1+s)/2), se(0,1]. igé

This latter approach involves maintaining a stack of : 19
polynomials to be economized, and has the advantage of 3}2
adaptively refining the original curve. 16

15
i3

| No matter which partitioning scheme is used, the ‘11
. geometric continuity of the final piecewise approximate id 13
 controlled by the value of the parameter a. The ;i%
. approximate will be continuous if a=1, tangentially smoothl0
. if a=2, and curvature continuous if a=3. This is }

; assured by the fact that each iterate P;(s) matches |

tangent and acceleration directions where joined, dopcndin

'~ on the value a. That is,

[l SO JRVERF SV, e \ IR e o RV o]

ps) = 2N), 4 =0,...,0-1; 6 = 0,1.




For a complete discussion of geometric versus parametric
continuity we refer the interested reader to Bartels,
Beatty and Barsky (1987).

4. Chebyshev Economisation and the Remes Algorithm

i At the heart of the preceding section is constrained

Chebyshev economization. It is natural to ask how this

construction compares with existing methods, and can it bq 2q

- improved upon. In this section we make some qualitative

this method to an implementation of the Remez algorithm.

4.1 Chebyshev Economization

The Chebyshev expansion for a function on an interval has
long been a tool of numerical analysts. The truncation of

' that series approximates the function almost uniformly,

with an error on the order of the first neglected term.

" Thus it is not difficult to see that if an nth degree
. polynomial is approximated using CE by a constant

polynomial, the coefficients in the degree reduction
process are, in effect, the coefficients of the

. polynomial's Chebyshev expansion. Consequently,

terminating the process at an intermediate stage produces
near uniform approximation to the original polynomial.

The cost in arithmetic operations to produce an mth
degree polynomial approximate to an nth polynomial is
(n2-12+n-n). If a breakup of the original curve is
required, then this cost times the number of pieces
provides an upper bound on the total number of operations.
This cost can, of course, be reduced if the original curv
is refined adaptively, as suggested in the previous
section.

. 36
' observations about this approximation process, and compare
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4.2 The Remes Algorithm f

0
N
2
B

LA F YY)

The Remez algorithm is a standard method for estimating tueéﬁ

best uniform polynomial approximate of a continuous ' jg
function. It exploits the fact that the error between a CAT
function and its best nth degree polynomial approximate | 22
attains its maximum (in absolute value) at least m+2 i44
times, and does so while alternating signs. We will not =3§
discuss the method completely here, but only summarize so 1
of the computational steps involved. Details can be foun gg
in Davis (1963). 38

Let f(s) denote a real function to be approximated [gg
on an interval ([a,b], and let (si}?:i be an initial !35
alternation set. A polynomial p(s) € T, and an error E ig

are determined so that f(s;)-p(s;) = (—l)iE, 1<ism+2. ThEBZ

location of a maximum of |[f(s)-p(s)|, say s*, is

determined and exchanged with an appropriate element of

(si)?:%. The entire process is repeated with the new

31
30
0 29
[ 28
27

alternation set until the actual maximum is satisfactorily 26

!close to the computed value E.

Each iteration of the Remez algorithm requires a number
- of calculations. If f(s) ¢ 7., then the initialization o
“the m+2 dimensional system of equations requires

© (m+2) (2n+m(m-1)/2) operations, the solution of this systeh

of equations requires on the order of 2(m+2)3/3

operations, and the difficulty of estimating the maxima of L

jlf(s)—p(s)l depends on the relative precision required.
Some computational savings can be derived from the fact
that the coefficient matrix need not be entirely redefined

, at each stage, but solution of the resulting system and the

. search for maxima can be costly.

To more directly compare CE with the Remez algorithm,
consider an example where n=15 and m=7. A single pass
:through the CE process takes 184 arithmetic operations.
'The initialization of the system of equations for the Reme

25
24
]23
£
20
19
18
17

6
I 15
;14
113
112
11
10
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algorithm requires 459 arithmetic operations, to say .

nothing of the solution of the 9x9 system, or the searcﬂ %I

for the maxima. {ig

. 48

47

5. Zolotareff Economiszation izg
|

' Examination of the CE algorithm shows that it is a ratherg 3;

simple process involving only the coefficients of a set o 2%

fixed real polynomials, and that the degree of the 40

polynomial is reduced by one in each iteration. It seems gz

reasonable to seek a greater degree reduction with [ 37

comparable arithmetic simplicity. Egg

'
¢

|
]

To investigate this possibility consider the real valued34

polynomial p(s) = as" + ags™1 4+ -+« ¢ . Conventional CF%;
would have us define the first two approximates p;(s) and 31
‘ 30
py(s) by 29
128

0 27

Py(8) = p(s) - a C(8) € x_47 Y

425

0 24

P2(8) = py(s) - a(g + n/2) C_,(s) € 7, 53

(22
Alternaltively, we could define an approximate q(s) by 221

jqz(s) = p(s) - a 2,(0i8) € x,_,, where iig
Zn(0i8) = 8"+ o™ 4 oo ey ; ?%z

15

max |2,(0:;s)| = min max |sP + o8Pl - g(s)]. 14

8€(0,1) gex,_, 8€[0,1) Ki%

The extremal polynomials 2,(0;8) were studied by ié
! Chebyshev's student Zolotareff (but with the problem 9
phrased on the interval [-1,1]). g
Zolotareff showed that 2z, (g;s) could be explicitly g
determined for only a small interval of ¢ values; and 4
Kirchberger developed a first order approximation to ;
Z,(0;s) for values outside that interval (see Meinardus 1




b
oo

30

(1967)). In the explicit case the extremal polynomial can | t

be determined by a translation of the Chebyshev
polynomials. In effect,

vel = N n-1 ,Nz2 i
zn(a,s) = 8" + 0os +i§0 ai(o) s

!
where the coefficients a;(0) are polynomials in the

variable o. Otherwise 2,(0/s) can be approximated by aa
linear combination of Th(s) and Up,(s), the Chebyshev
polynomials of the first and second kind, respectively.
The arithmetic complexity of using either of these
representations in an economization scheme is at best no

better than two iterates of conventional economization. As :

a result it would seem that CE is in some sense optimal
relative to the quality of the result and the arithmetic
computations required.
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CALCULATION OF THE ENERGY OF A PIECEWISE
POLYNOMIAL SURFACE

EWALD QUAK
LARRY L. SCHUMAKER
Department of Mathematics

Vanderbilt University

Abstract: This paper is related to the problem of constructing a smooth piecewise
polynomial surface fit to data given at the vertices of a triangulation. We are inter-
ested in methods in which the surface is represented in Bernstein-Bézier form, and
the coefficients are chosen so that the resulting surface minimizes some expression
involving the energy of the surface (for example, see [1,3,5-9]). Here we do not go
into the details of such methods themselves, but instead concentrate on the prob-
lem of representing the energy associated with a particular choice of coeflicients.
The formulae developed here will be applied elsewhere to specific interpolation and
smoothing methods.

Keywords: multivariate splines, data fitting, interpolation, energy

1. Introduction

Let A be an arbitrary triangulation of a domain @ C R?. Given integers
0 < r < d, we define the associated space of polynomial splines of degree d and
smoothness r by

SHA)={s€C"(Q):s|r, €Pa, i=1,...,N}, (1)

where P, is the (d;’z) dimensional linear space of bivariate polynomials of total
degree d, and where T;,¢ = 1,..., N, are the triangles of A. While the constructive
theory of these spaces of splines is not yet complete, they are clearly useful tools
for fitting surfaces to data of the form

z.~=f(z.-,y.-)+e.-, i1=1,...,V, (2)



where (z;,vi),i = 1,...,V, are given points scattered in the plane (and forming the
vertices of the triangulation), and where ¢;,7 = 1,...,V, are measurement errors.

In this paper we are interested in two classes of surface fitting methods using
the space S3(A). The first class of methods involves minimizing some measure of
smoothness J(u) over the subset

U={ueSi(8) : u(zi,yi)=2zi, i=1,...,V}. (3)

The set U is the set of interpolating splines. We may call these kinds of methods
smoothest interpolation methods.

The second class of methods of interest involve minimizing a combination of
smoothness and goodness of fit such as

pA(s) = AJ(s) + E(s),

over S7(A), where A > 0 is a smoothing parameter, and where E(s) measures the
goodness of fit. For example, we might take

v
B(s) = 3 Is(asui) — ="

This is an example of a penalized least squares method (see {6] in this volume).
While other energy expressions can be treated by similar methods, throughout
the remainder of this paper we restrict our attention to the functional

N
J(u) =" Jr(u), 4)

=1

where

Jr(u) = / / [(uss)? +2(usy)? + (ugy)?ldedy, i=1,...,N,
T;

where u ., represents the second order derivative of u in the z direction, etc. This
expression represents the energy of a ”thin plate”, and is a natural way of measuring
the roughness of a surface (see [3,9]). We have defined J in (4) as a sum of integrals
over the individual triangles of A in order to be able to apply it to spline spaces
S3(A) even if the global smoothness r is less than 2. (Indeed, in applications it is
common to use C! splines, where r = 1).

The main purpose of this paper is to find formulae for representing J(u) in
terms of the coefficients of the Bernstein-Bézier representation of a spline u in
S§37(A). This is an essential step in deriving numerical algorithms for calculating
spline fits as discussed above. The remainder of this paper is organized as follows.
In Section 2 we introduce the necessary notation for representing splines in S3(A)
in Bernstein-Bézier form, and introduce certain energy expressions. In Section 3
we derive convenient recursion formulae for these energy expressions. In Section 4
we apply our results to give explicit formulae for cubic and quartic splines.
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2. The Bernstein-Bézier representation

In working with S7(A) numerically, it will be useful to regard S7(A) as the
linear subspace of $3(A) defined by

SH(A) = {s € S3(A) : seC(V)}. (5)
Each spline s € S(A) can be written in the form
s(z,y) = si(z,y) for (z,y)e€Ty, l=1,...,N,

where s; is a polynomial of degree d, I = 1,..., N. Each of these polynomials can
be written in Bernstein-Bézier form as

dirisitk

l
si(r,s,t) = Z ik TR
i+j+k=d
where (r, s, t) are the barycentric coordinates of a point (z,y) in the triangle Tj.
Identifying the Bézier-ordinates c! j& on common edges of triangles forces the con-
tinuity of the associated piecewise polynomial function.
With each Bézier-ordinate c! jk We associate a domain point

Ph = (Vi + 5V + kVY) /d,

where V!, V;, and V! denote the vertices of the triangle T;. We omit the superscript
| whenever this will cause no confusion. The set of all domain points is denoted
by B4(A). On each triangle T of A there are precisely (d + 1)(d + 2)/2 points of
B4(A) spaced uniformly over T. It is common to associate the coefficient cf-,-,‘ with

the domain point Pfjk. Clearly, the set
C={cfi}, €=1,...,N and i+j+k=d
of coefficients uniquely defines a spline in SJ(A). It is easy to see that

ne=#(C) =V +(d=1)E + (dgl)zv,

where V is the number of vertices in A (which is also the number of data points),
and where E is the number of edges and N the number of triangles of A.

It is well-known (cf. (2,4]) that a spline s € S3(A) lies in ST(A) if and only
if an appropriate set of continuity conditions, each of which can be described by
a linear equation involving the Bernstein-Bézier coefficients, is satisfied. Thus, we
can write

5i(8) = {s € 53(B) : Ac =1}, (6)

where c is the coefficient vector of length nc, A is an appropriate m x nc matrix
(where m denotes the number of continuity conditions enforced), and b is an ap-
propriate m vector. The exact nature of A and b is of no concern here, but is,
of course, critical in implementing a specific surface fitting method. We remark
that in general, nc > V + m, so that even after specifying both smoothness and
interpolation conditions, there remain a certain number of free parameters to be
used in the minimization process.
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3. Formulae for the energy of a single patch

In this section we give formulae for the energy of a polynomial of degree d
described in Bernstein-Bézier form on a triangle T. Throughout this section we
suppose that the polynomial is written in the form

d i
p(rasat) = Z Z biﬁ%’_‘l+j+1¢d—i,i—j,j(risvt)1 (7)
1=0 j=0
where, in general
a+ B+ ) resfty
Qa,g,.,(r,s,t) = ( 8 7) . (8)

ol Bly!

Now since p € Py, it follows that p:s, p:y, and py, belong to P4_; and that
(D2,+2D%, +DZ,)p belongs to Py4—2). Introducing the notation b := (by, ..., b,)7,
where n = (*3%), we find that the energy of p over the triangle T is given by the
quadratic form

JT(p) = bTE(d)ba

where E(¥ is an appropriate symmetric n X n matrix.

The remainder of this section will be devoted to finding the entries of E{(?). We
determine them recursively, starting with the case d = 2. As we are dealing with
a rotation invariant energy expression, without loss of generality we can assume
that the triangle T is in the canonical position shown in Figure 1 with vertices
Vi = (b,¢), V2 = (0,0), and V3 = (a,0). In this case, the barycentric coordinates
(r,s,t) of a point (z, y) are given by the formulae r = y/¢, s = 1 —z/a+(b—a)y/ac,
and t = z/a — by/ac.

4 Vi(d,¢)

. I

V2(0,0) Vi(a,0)

Figure 1. The canonical triangle
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Now
d—2
prr(r7 3, t) = d(d - 1) Z Z bi(%tll+j+1¢d—2—i,i—j,j(ra 8, t)v
=0 j=0

with similar expressions for the other second-order partial derivatives. Using
Pz = Prr"i + 2Pr.97'1:3: + 2Prt7°ztz + pusi + 2pstSsts + Pttti (9)

and the analogous expressions for p;, and p,,, we find that E®) /2qc is a symmetric
6 x 6 matrix whose entries in the upper triangular part are as follows:

(RR)? 2RRRS 2RRRT (RS)? 2RSRT (RT)?
2RRSS +2(RS)®> 2RRST +2RSRT 2RSSS 25SRT +2RSST 2RTST
2RRTT + 2(RT)* 2RSST 2TTRS +2RTST 2RTTT

(85)? 2ST SS (ST)?
2SSTT +2(ST)? 2STTT
(TT)?

where R = (rz,7y), S = (8z,5y), and T = (¢;,¢,), each of which can be expressed
in terms of the quantities a,b and ¢ describing the locations of the vertices of T.

We now present the main result of this paper, a recursion relation for computing
the entries in the matrix E(9 for arbitrary d > 2.

Theorem 1. Let T be a canonical triangle as in Figure 1. Then fori = 0,1,...,d,
j=0,1,...,¢, k=0,1,...,d,and l = 0,1,...,k,

d 2 d
T

where

(d)

) _ .2
Cijkd =T Cijkl

3,7,k
(d

d
+ rs[eg,j),k—l,l + ei—)l,j,k,I]
d d
+ "t[CS-)l,j-x,k,t + eg,j),k—l,l—ll

2 _(d)
+8%€;_1 k-1,

(d) (d)
+stle; ) jkm10-1 €1 o161,

2 (d)
+t%e; ) o1 k-1,1-1

These recursions begin with the values

(2) 1 ~@

e’ = E;
i3,k 2ac L('_z1il+j+l'ﬂ._2'f‘_‘l+l+]’




contained in the matrix E® given above.

Proof: We proceed by induction. Since the area of T is ac/2, the assertion is clear
for the case d = 2. To prove the result for d > 2, we use the easily verified recursion
formula

Do 8,4(r,8,t) =1Po1,8+(1,5,1) + 5Pa g—1,4(r,5,t) + tPq g,4-1(r,s,2).  (10)
Now by (9),

d 1
Pzz(7,y) = d(d - 1) Z E biﬂ‘_';'_‘)_.'.j.'.lAE;)(z, Y)

i=0 j=0
where
d
Ag,j)(za Y) =128y iginj;+2r:8:®dmicticjo1,j +2rete®aiy,icj i
+83Pd—iimj2,j + 282t Bdmijicj=1,j-1 + t3Pu—iizj 2.
Using the recursion relation (10), we find that

d d— d— -
A(z,y) = rATV (@, y) + 84D (2 y) + 14 (=)

fori =0,1,...,d and j = 0,1,...,i, provided that we start with A’ = r2, 41%) =

2r.s;, Agzl) = 2r.t,, Ag?(), = 32, Ag?z = 2s,t,, and Ag?% = t2. The polynomials Pry
and p,, have similar expansions in terms of functions satisfying the same recursions,
but with different starting values.

Using the above, we get

d d k
2 2 2 d
[Pzt] =d (d - 1) z z Z Z bi.(i;il+j+1bﬂ“_z‘ﬂ).+l+1eiz),i,j,k,l?

=0 j=0 k=0 /=0

where (d) (d) (d)
eu,i,j,k,z(f, y) = Ai,j (z,9)- Ak,z(’-', y)-
Let ei':),,-,j,k', and eg';)'i’ ;&1 be the relevant expressions involved in the expan-

. d d d d
sions of [p;,]? and [p,,]?, and let es,)-)’k', = e(")'i'j,k,, + 2c£y),,-,j'k’, + egy)',-,j,k',. Then

it follows that effij), x,1 satisfies the stated recursion relation, and

d i d &
2 d
(D% +2D%, + Dylp=d*(d—=1)" 3D "% > bicsu, 4 bresn gy e

i=0 j=0 k=0 {=0

The result follows since the entries of the energy matrix are obtained by inte-

grating the expressions eff?_ k1 over the triangle . W




4. The cubic and quartic cases

In this section we consider cubic and quartic splines as they are the most likely
to be useful in practice. In particular, we present the explicit entries in the energy
matrices E(®) and E). Before proceeding, we observe that by the symmetries
involved, in describing E(4), it is not necessary to give all of the (d + 1)2(d + 2)?/4
entries. First, by symmetry it suffices to work only with the upper-triangular part
of the matrix. Moreover, it is clear that in the upper-triangular part, whenever
a formula occurs involving R, S, there are always two others of the same form
involving S,T and R,T (cf. the E2, E{¥ and E{? entries of the matrix E(
given above). In addition, whenever a formula appears involving either one or
three of the letters, then there are always two other similar formulae obtained by
cyclic )permutation (cf. the E\?, Eﬁ), and Eg?, or the Egg), Eg), and E;g) entries
of E(®).

The following theorem computes the number of formulae which must be given
in order to completely specify the matrix E(4).

Theorem 2. The number of formulae needed to specify the matrix E is g4,
where g_o = q—; =0, g0 = 1, and where for k > 0,

g2k = 2k* + 4k + q2x—3
g2k—1 = 2k* — 3k? 4+ 5k — 2 4 qap—4.

Proof: The result follows for d = 2 by inspection of the matrix E‘? given above.
Now we can proceed by induction. We consider the recursion for g;;_; first. In
the first row it is easy to see that it suffices to give 2 + 4 + --- + 2k entries — this
corresponds to the products of b; by the b; associated with domain points in the
left half of the triangle T. For example, in the cubic case (cf. Figure 2), we need
the (1,1),(1,2),(1,4),(1,5),(1,7),(1,8) entries. Next, foreach:=1,...,k—1.in
the '—('3219- + 1-st row of the matrix we need Q'—ﬂ-lz-(-ﬂ —3(2: — 1) - 1 formulae. In
the cubic case in Figure 2, these are the (2,2),(2,3),(2,4),(2.5),(2,6),(2,9) entries.
This accounts for all rows corresponding to coefficients on the boundary of T. To
complete the proof we simply apply the induction hypothesis to the coefficients
lying inside the triangle. In the cubic case this is just the (5, 5) entry.

The proof of the recursion for ¢y is similar. In this case, in the first row it
suffices to give 1 +3 + --- + (2k + 1) entries - this corresponds to the ﬂucts in
the left half of the triangle T. Next, for each i =1,...,k — 1, in the & "2“ + 1-st
row of the matrix we again need g"—“)%iz-) —3(2: — 1) — 1 formulae. In this case we

also need to do the L(.%l + 1-st row, which requires k(k — 1) + 2 formulae. Finally,
we apply the induction hypothesis to the coefficients lying inside the triangle. B

Using Theorem 2 we see that for the cubic case we need 13 formulae, while for
the quartic case we need 26 formulae.



Figure 2. A typical triangle with associated coefficients

Example 3. The thirteen essential formulae for the entries of G = 5E®) /9ac are

G{’) =(RR)’

G{*) =2RR RS + .5(RR)’

G, =(RS)* + RRRS

G} =2RSRT + RRRT + RRRS

G{*) =.5(RS)’

G{®) =RSRT + 5(RS)?

G{) =2RRSS +2(RS)* + 2RRRS + (RR)*

G)) =2RR ST + 2RS RT + RRRT + RRRS + 5(RR)*

G{®) =255 RS + RRSS +1.5(RS)* + 2RR RS

G{’} =2SSRT +2RS ST + RRST +2RSRT + RRSS + (RS)* + 2RRRT + RRRS

G{’) =2RT ST + .5(RT)? + RRST + RSRT + RRRT

G{?) =RT ST + SSRT + RSST +(RT)* + RSRT

G{®) =2(SSTT + (ST)* + TT RS + RT ST + SSRT + RSST + RRTT + (RT)?
+ RRST + RSRT + RRSS + (RS)*)



Example 4. The 26 essential formulae for the entries of H = 5E*) /4ac are

H{*) =6(RR)*
H®*) =12RRRS + 3(RR)’
H{*) =6(RS)* + 6RRRS +(RR)’
H{*) =12RS RT + 6RRRT + 6RRRS + (RR)’
H{!) =3(RS)* + 2RRRS
H{*) =6RS RT + 3(RS)? + 2RRRT + 2RRRS
Hi.‘l)l =(Rs)?
H{%), =2RSRT + (RS)*
H{*), =(RT)* + 2RS RT + (RS)?
H{') =12RR SS +12(RS)* + 12RR RS +4(RR)?
H{!) =12RR ST +12RSRT + 6RR RT + 6RR RS + 2(RR)’
H{') =12SS RS + 6RRSS + 9(RS)* + 10RR RS + 3(RR)’
H{") =12SSRT + 12RS ST + 6RR ST +12RSRT + 6RRSS + 6(RS)* + 8RR RT + 6RRRS
+ 2(RR)?
H{") =12RT ST + 3(RT)* + 2RR RS + 6RR ST + 6RS RT + 4RRRT +(RR)?
H{') =6SS RS +6(RS)* + 2RRSS + 6RRRS
H{) =6SSRT + 6RS ST + 655 RS + 10RS RT +2RRST + 2RRSS + 4(RS)? + 6RRRT
+4RRRS
H{!) =6RT ST + 6SS RT + 6RS ST +4(RT)* + 2RR ST + 6RSRT +2RRSS + 2(RS)?
+4RRRT +2RRRS
H{*"), =6RT ST + 2(RT)* + 2RR ST + 2RS RT + 2RRRT
H{'), =2RT ST + 2SS RT + 2RS ST + 2SS RS + 3(RT)* + 4RSRT + (RS)’
H{"), =2RT ST + 1SS RT +2RS ST +2(RT)* + 2RSRT
H{') =6(55)* + 1255 RS + 8RR SS + 10(RS)* + 12RR RS +6(RR)’
H{!) =12SS ST + 6SSRT +12RS ST + 6SS RS + 8RR ST + 10RSRT +4RRSS + 5(RS)?
+6RRRT +6RRRS + 3(RR)?
H{") =6(ST)* + 6RT ST +6RS ST + (RT)* + 4RRST +4RSRT + (RS)® + 2RRRT
+2RRRS + (RR)?
H{!) =3(ST)* + 6SSST + 8RT ST + 4SS RT + 6RS ST + 2SS RS + 3(RT)* + 4RR ST
+68RSRT +2RRSS +2(RS)* + 6RRRT +2RRRS
H{") =12SSTT +12(ST)? + 12TT RS + 12RT ST 4 12SSRT +12RS ST + 8RRTT + 8(RT)?
+8RRST + 12RSRT + 8RR SS + 8(RS)* + 8RRRT + 8RR RS + 4(RR)?
H{!} =6SSTT +6(ST) + 6SS ST + 10TT RS + 10RT ST +6SS RT + 10RS ST +8SS RS
4+6RRTT +6(RT)* + 6RRST + 10RSRT + 4RRSS 4+ 6(RS)? + RRRT + 8RRRS
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RADIAL BASIS FUNCTION INTERPOLATION ON AN INFINITE REGULAR
GRID

M. D. BUHMANN and M. J. D. POWELL
Department of Applied Mathematics and Theoretical Physics
University of Cambridge

Abstract A radial basis function approximation s(-) from R" to R depends on a
fixed set of points {z;} in R" and on a fixed function ¢(-) from R* to R, as it has
the form {s(z)=3; X; é(||z — z:]|2) | z € R"}. We consider the case when {z;} is the
infinite lattice Z™ and the coefficients {);} give interpolation on the lattice. There-
fore we study the cardinal function C(-), which is in the space of approximations
and satisfies {C(€) = éoc | £ € Z"}. By employing Fourier transforms, we identify
the rate of decay of |C(z)| to zero as ||z|| — oo for several useful choices of ¢(-).
Further, an algorithm is presented for calculating C(z) for moderate values of ||z]|.
It provides some tabulations of the cardinal function that quantify the qualitative
asymptotic theory. The results may be highly important to the development of new
algorithms for multivariable interpolation, because they include some cases where
the asymptotic decay to zero is very fast.

Keywords  Cardinal functions. Fourier transforms. = Gauss-Seidel iteration.
Interpolation. Multivariable approximation. Radial basis functions.

1. Introduction

Radial basis functions provide a versatile family of functions from R™ to R that is
highly promising for the approximation of functions of several variables in computer
calculations. The generic radial basis function, ¢(-) say, is from R* to R, and a
typical radial basis function approximation with n variables has the form

s(z) =3 M dlllz - zill2), zeR", (1)

=1
where {\; |i=1,2,...,m} and {z,; |i = 1,2,...,m} are real parameters and fixed
points in R" respectively. When interpolating to values of a function f(.) : R" =R,




[

it is usual for the {z; | ¢ = 1,2,...,m} to be the points at which the function
values are given and for the parameters {); | i = 1,2,...,m} to be defined by the
interpolation conditions

s(z;):f(a:,-), i=la27'--sm' (2)

Of course the points {z; | i = 1,2,...,m} should all be different, and then for
many useful choices of ¢(-) the interpolation conditions are guaranteed to define the
parameters uniquely (Micchelli, 1986). This important work was reviewed at the
previous Shrivenham conference (Powell, 1987).

An obvious advantage of expression (1) over the methods that are employed
usually for multivariable approximation is that this expression does not become
more elaborate as the number of variables is increased. When m is large and ¢(-)
does not have finite support. however, then the work of calculating s(z) for any z
can be much greater than the work of calculating a typical piecewise polynomial
approximation. The purpose of the present paper is to consider another question
that is highly important to the usefulness of radial basis function approximation,
namely the localization properties of interpolation. In other words, assuming that
8(+) can be expressed in the form

m

S(.‘t) = Zf(zl) C,'(.’t), :z:E'R,", (3)

=1

where the cardinal functions {Ci(-) | i = 1,2,...,m} are independent of f(-) and
satisfy Ci(z;) = é;; in order that the interpolation conditions (2) hold, we ask how

quickly {Ci(z)| tends to zero as ||z — z,]| becomes large. Here || - || denotes any
norm on R™. We see that this question is directly relevant to the effect on s(-) of
perturbations to the given function values {f(z;) |: =1,2,...,m}.

Perhaps the best known example of localization properties without finite support
is cubic spline interpolation to values of a function of one variable at equally spaced
points throughout the real line. In this case the only zeros of C;(-) occur at the data
points {z; | j #i}, and the cardinal function satisfies the relation

Ci(zi £ 0) = (V3-2)Ci(z: £ [0-h]), 0>2h, (4)

where h is the spacing between data points (see Powell, 1981, for instance). Thus,
if k is the number of data points between z and z;, then |{C(z)| is bounded above
by a multiple of (2—+/3)*. This example can be construed as radial basis function
approximation with n = 1 and {¢(r)=r3 | re R*}.

We restrict attention to the case when the set of data points {z;} is the infinite
lattice Z™ of points in R" with integer components, in order that several decay
properties of cardinal functions can be derived by Fourier techniques. It should be
noted, however, that some of the main advantages of radial basis function interpo-
lation occur when the data points are in general position. We let ¢ be the generic
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, point of Z™, and, using translational symmetry, we write equation (3) in the form
3
S (@)= ¥ f(OC(z-0), zeR" (5)
tezn
where now there is a single cardinal function that satisfies {C(j) = &; | j€ Z™}.
Provided that all the sums and integrals in this paragraph are uniformly conver-
gent, it is suitable to let C(-) be the function
C(z) = Z ce o]z —€2), zeR™, (6)
tezn
where the coefficients have the values
1 eil.@
= — . dg, (ezZn. 7
‘T (o) /[—ml" Ykezn €7 *6(] k|l2) )
¢ Here : is v/—1 and £.8 denotes the scalar product between £ € Z" and § € R*. We
see that C(-) is in the correct linear space, and that the identity
C(7) = Y ceo(lli— )
te2n
‘ = T el
tezn
L[ B 0
(27)* Jirmn Tiezn e~ *08(|k||2)
1 3
— 15.0 = . . n
. = & /[_m}“ €9do = b, jEZ, (8)
is satisfied, which makes expression (6) plausible. This way of identifying the
cardinal function is successful when {#(r) = e | r € R*}, for example, but,
due to the conditions of absolute convergence, it cannot be applied directly unless
T tezn |6(][€]|2)] is finite. Therefore we employ Fourier methods to study the cardinal
functions of the choices
#r)=r (linear)
#(r)=rd (cubic)
. #(r) = Vr1 4 ¢c? (multiquadric) . (9)
#(r) = 1/v/r?+c*  (inverse multiquadric)
#(r) = r?logr (thin plate spline)
We are interested in these radial basis functions because each one can give s= f
when f(-) is a low order polynomial (Jackson, 1987; Buhmann, 1988b). Specifically,
¢ letting II7 be the space of all polynomials from R™ to R of total degree at most g, the
interpolation formula (5) reproduces each f(.)€ I}, whereg =n,n+2,n,n~2 and
n + 1 in the linear, cubic, multiquadric, inverse multiquadric (assuming n > 2) and
¢
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thin plate spline cases respectively. In each of these cases C(-) has the form (6) for
certain coefficients {c, | £€ Z™} that make the sum (6) absolutely convergent, so the
cardinal function is well-defined. Further, the sum (5) is also absolutely convergent
for every z € R™ and every f(-) € II7, and it gives {s(z) = f(x) | £ € R"} when
f(-)€II}. It should be noted, however, that the double sum

> f0) 3 cidlllz —€—jlla), (10)

tezn JEZ"

which is obtained by substituting expression (6) in formula (5), need not be abso-
lutely convergent. Indeed, if we were allowed to rearrange terms, then the factor
Yezn f(€) #(||lz—€—j|l2) would multiply c;, but when f =1 this factor is a divergent
sum for all of the choices (9).

For example, consider the case when n =1 and {¢(r) =r | r € R*}. The co-
efficients of the cardinal function (6) have the values co = —1, c_; = ¢ = % and
{ce=0] |€] > 2} in order that C(-) is the hat function of piecewise linear interpo-
lation. Hence formula (5) reproduces all linear polynomials. Thus the space that
is spanned by the radial basis functions { {|]lz — ¢)|; | z € R} | £€ Z} includes II},
although no nonzero linear polynomial can be written as {34z A¢ ||z — €|l | z€R}.
Therefore, when studying the cases (9) we take the view that the approximation s(-)
is to be in the linear space that is spanned by functions of the form (6), which admits
the very powerful observation in the previous paragraph that g increases with n. Of
course this point of view is unnecessary when m is finite in expression (1). It is also
unnecessary when {z;}=Z" and {¢(r)=¢~"" | r€ R*} for example, but in this case
the interpolation formula (5) does not give s = f when f =1 (Buhmann, 1988b).
Therefore in practice the Gaussian radial basis function is usually far less successful
than the nonintegrable functions (9).

We study the cardinal function C(-) theoretically in Section 2. Here we recall
from Buhmann (1988b) an explicit expression for the Fourier transform of C(-) that
is valid for all of the choices (9), and we also recall that the asymptotic decay rate
of |C(z)| to zero as ||z]| = oo can be deduced from the differentiability properties
of this transform. This analysis identifies the dominant term of C(z) for large ||z||
when ¢(r) =r and n = 2.

In Section 3 we present a procedure for calculating values of C(z). It employs a
quasi-interpolating function

¥(z) =3 ndllz - €2), zeR", (11)

te2

where Z is a finite subset of Z*, that ideally possesses the diagonal dominance

condition ,
[B(0) > 3 Jw(e)l. (12)

tezZn




Here and throughout this paper the prime on the summation indicates that the /=0
term is omitted. This function is used in an iteration of Gauss-Seidel type to obtain
an approximation Cy(-) to C(-) that satisfies the cardinality equations

Cb(e) = 606 le zn, ”elloo < b7 (13)

for some fixed integer 6. We find that this approximation is sufficiently accurate to
give good estimates of the true cardinal function for ||z < 3.

Thus several tables and graphs were calculated that show properties of C(z) for
n=2 and n=3. We find when n=3 and ¢(r) =r, for example, that {|C(z)| < 10~¢ |
[lz]lc > 5}, which is superior to the decay rate (4) of cubic spline interpolation.
These numerical results are given and discussed in Section 4, and we note that they
suggest several topics for further research.

2. The Fourier transform and decay properties of the cardinal function

The Fourier transform of a continuous and absolutely integrable function {g(z) |
z€R"} is defined by the formula

i) = [ e=tg(z)ds, teR™, (14)
and, when §(-) is continuous and absolutely integrable too, the inverse formula is
the relation .

_ iz.t A n
9(=) = Gy /Rne §(t)dt, zeR" (15)

(see Stein and Weiss, 1971, for instance). In this section we derive some decay
properties of the cardinal function C(-) from its Fourier transform C(-) for each of
the radial basis functions (9).

It is proved by Buhmann (1988b) that in all these cases C(-) has the remarkably
simple form

Lhezn B([[t — 27kl|2)
where {¢(|itl|2) | t € R} is the generalized Fourier transform of the radially sym-

metric function {¢(||z||2) | z€R"}. Jones (1982) presents an excellent introduction
to generalized transforms, and shows that the functions

te R, (16)

é(r) = r—m-1 (linear)

é(r) = rn-3 (cubic)

$(r) = (c/r)" V2K 1 ya(er)  (multiquadric) (17)
#(r) = (¢fr)"="W2K(,_yya(er)  (inverse multiquadric)

d(r) = r-n-2 (thin plate spline)
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are appropriate to the radial basis functions (9), except that for simplicity we have
suppressed some constant normalization factors because they are irrelevant to the
ratio (16). Here K, (-) is the v-th modified Bessel function as defined in Abramowitz
and Stegun (1970). .

We see that in all these cases the generalized Fourier transform {¢(]|t]l2) | te R"}
is unbounded at the origin, but otherwise it is positive, continuous and absolutely
integrable over every closed part of R™ that excludes the origin. In view of equations
(16) and (17), this unboundedness implies the values C(0) =1 and {C(27k) =0 |
k € Z2"\{0} }, which are important to the fact that interpolation reproduces low
order polynomials (Jackson, 1987). Further, when ¢ is not in the set of lattice points
{27k | k€ 2"}, the denominator of expression (16) is an absolutely convergent sum
that is periodic and bounded away from zero. It follows from all these remarks that
C(-) is well defined when we substitute §(-)=C(-) in the inverse Fourier transform
formula (15).

Buhmann (1988b) uses some properties of generalized functions to prove that this
C(-) is the required cardinal function, but the following simple analysis is sufficient
when certain sums and integrals are absolutely convergent, including the conditions
that {¢(||z]|,) | z € R™} is the classical inverse Fourier transform of {(||t||2) | te R™}
and Y i zn #(||t — 27k||2) is nonzero for all t. For example, these conditions hold for
the Gaussian radial basis function {#(r)=e~"" | r€ R*} because {¢(|it|l2) | te R"}
is a constant multiple of {e-W5/4 | t € R"}. Corresponding to the identity (8),
equations (15) and (16) give the cardinality conditions

_ 1 et 3(||tll2)
o) = =
U) = G /R Tiezn (||t — 27k]|2)
1 / Teezn 7029 (|t — 2xllla)
-nx)n

(2m)" Ji Trezn 8(lIt — 27k|l2)
1 » .
BCZE /[—r & dt =bojy JEZT (18)

where the middle line depends on the periodicity of the denominator and the last
line on €7(3*Y = 1. Moreover, to show that C(-) has the form (6), we note that the
continuous periodic function

wit) =1/ 3 §(lit - 27k[la), teR", (19)
keZ™
is equal to its Fourier expansion, so we have the identity
w(t) = Z cee™t, (20)
tezn

where the coefficients have the values

—- 1 sl.t n
= «/[—r.r]"e w(t)dt, feZz". (21)




Thus C(-) is the function

C(z) = (2,1,)., [ e Cwae
= G o @ 0 Bl o
= T 5o Jon €70 Bt )
= ‘gnc,ﬂ"z—l”z), zeR™, (22)

where the third and fourth lines depend on equations (20) and (15) respectively.
This expression is identical to equation (6) as required. Further, it can be deduced
from the Poisson summation formula (see Stein and Weiss, 1971, for instance) that
the coefficients (7) and (21) are the same.

Next we consider the localization properties of interpolation that can be deduced
from C(-). If {C(t) | t € R"} has absolutely integrable second derivatives and is
sufficiently smooth for large ||¢||, then integration by parts applied to formula (15)
gives the relation

1 .
C(z) = -(27);/1&' e*t C(t) dt
- . d -
—_ izt o
= GG Jre g Ol
— -1 iz.t 4 .
= W/R"e [d—t%C(t)] dt, (23)
which implies the identity
l2lfi C(2) = 5 [ e veld, zern, (24)

and there is an upper bound on the modulus of the right hand side that is inde-
pendent of z. Similarly, if C(-) has absolutely integrable derivatives of order ; and
enough smoothness at infinity, this technique provides the inequality

IC(z)| < A;[1+ |lzlls)?, zeR", (25)

for some positive constant A;. Thus the decay properties of the cardinal function
C(-) are intimately related to the differentiability of its Fourier transform C(-).

Therefore, as in Buhmann (1988b), we consider the differentiability of the func-
tion (16) for each of the choices (17) of ¢(-). In the linear, thin plate spline and
cubic cases we have the Fourier transform

Gty = [1+itz*™ 3 lit — 2kl ™), teR, (26)
k€2Zn




where m=1,2 and 3 respectively. We see that this function is infinitely differentiable
throughout R"™ when n + m is even, which gives the important conclusion that a
bound of the form (25) is satisfied for every positive j. In fact in these cases |C(z)]
decays exponentially as ||z|| — co (Madych and Nelson, 1987; Buhmann, 1988b),
which means that the condition

IC(z)| < Al zeR™, (27)

is satisfied for some constants A >0 and u <1. One purpose of the numerical results
of Section 4 is to indicate the magnitude of 4 when n=2 and n=3.

When n+m is odd in expression (26), however, then C(-) has singularities at the
grid points t €2x 2™ that restrict the value of j in inequality (25). The singularities
at t=0 and when t€ {27k | k€ 2"\{0} } are shown in the expansions

Ct)=1- Htll"‘”"‘kzz l2zkljz™=™ + O(jitliz*™**) (28)
c2n
and
C(t) = ||t — 2mkljz+m ll27rk!|‘"'"‘ +O(Jit — 2xklj3*™+1) (29)

respectively, and it is the contribution from these singularities to {C(z) | z € R"}
through the first line of equation (23) that dominates the magnitude of |C(z)| for
large [|z]|. Instead of integrating by parts, we pick out this contribution from the
fact that the generalized inverse transform of {||t|j3*™ | t€ R"} when n + m is odd
is the function

2+ I \n + m)

72T (~

Specifically, the terms from the smgulamtles of expressions (28) and (29) are given
explicitly in the equation

|| 73 ™, zeR™ (30)

1 izt A
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= G o € T e
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kezZn
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which is valid for all large ||z||. We see that the sum in the last line of this expression
is absolutely convergent, real, nonpositive and periodic in z € R™. Further, it
vanishes at the grid points z € Z™ in accordance with the cardinality conditions
{C(8) = bae | L€ 2™}

Later we give particular attention to the linear radial basis function ¢(r) =r
when n =2 and m =1. Therefore we note that in this case expression (30) has the
value 9/(2x||z||3), and for any z it is easy to work out numerically the sum in the
last line of equation (31). Thus we find the relations

C(z) = —0.05747 ||z||7°, [a:+(;, ) e 2?
C(z) ~ —0.06734 ||z))7%, [z +(1,1)]€ 2

for the values of the cardinal function at the midpoints of edges of grid squares and
at the midpoints of grid squares respectively. These asymptotic results agree well
with the calculations of Section 4 for moderate values of ||z||.

The following argument shows that, for even n, the asymptotic decay properties
of C(-) in the multiquadric and inverse multiquadric cases are similar to expression
(31). The dominant singularity of {K,(0) | € R*} at the origin is a multiple of -,

(32)

so we let m=1 and m = —1 for multiquadrics and inverse multiquadrics respectively,
in order that lines 3 and 4 of expression (17) give the relation
¢(r) = T + O(r~" ™) reRY, (33)

where u,, is a constant. It follows from formula (16) that, instead of equations (28)
and (29), we now have the expansions

C(t) =1 — 7t itl3*™ 3 "d(li2wkllz) + O(lltllz+™+) (34)
keZ"
and )
C(t) = p;t It — 27k||3+™ (127 kliz) + O(||t — 2xk||3+™+"). (35)

Thus expression (31) is still valid except that the sum inside the braces is replaced
by the term
A 2 =1+ e g(ll2nkll2). (36)
kezZn
In order to be more explicit, we recall from Abramowitz and Stegun (1970) that,
when v+1 is a positive integer, the v-th modified Bessel function is the finite sum

_ 2v—q-1) _

(0 f (—-— 9", feR* 37

Ku(0) = Ve qgoq,(uq (20, 0€R*, (37)

which after some manipulation gives the value

dUll2xklls) _ [2nklj5mm e-lrekl *"‘{L‘L""’ (A[n+m—1))! (n+m—g—1)! |[4mck|}
Bm 2 —=0 (in+m=-1]-g)! (n+m—1)!g!

(38)




When this expression replaces ||2xk||3"~™ in equation (31), we have the dominant

asymptotic term of the cardinal function C(-) for the multiquadric (m = 1) and
inverse multiquadric (m = —1) radial basis functions, provided that n is even.

In particular, taking n=2, m=1, c=% and z at the midpoint of an edge of a
grid square, this analysis gives the relation

9 ] : 1 [+
C(z) = — —1 4 e*mizk + eIkl 12|15 + of||z||7%)
= —0.005212jz||7® + o(l|]l7°), [z +(3,0)]€ 22, (39)

when ||zj| is large. One unexpected conclusion from equations (32) and (39) is that
in two dimensions multiquadric interpolation can have better localization properties
than linear interpolation (¢(r)=r).

If n is odd, however, then neither multiquadrics nor inverse multiquadrics give
the exponential decay (27). In these cases n+m is even in equation (33), so the
r~"~™ term does not cause a singularity in the Fourier transform (16) of the cardinal
function, but there is some loss of differentiability due to the expansion of the
modified Bessel function { K (n4m)s2(cr) | r€ R*} at r=0. Specifically, the do:ninant
term of ¢(r) for small r and the first term that gives a singularity are p,r~"~™ and
iim log r respectively, where u,, and [, are constants. Now equation (16) implies
the relation

C(t) ~ 1= [$(litll)]™* X "d(l127kll)

keZn

- i‘m - ’
1= g I+ == log llell + - 171 D s(li2wkll:)  (40)
l‘m kezn

for small t. Thus the leading singularity in C(-) is proportional to {||t||2"**™ log ||t||2 |
teR"}. The generalized inverse Fourier transform of this expression is a multiple of
{liz]lz3*~*™ | z€ R™}. Hence, for odd n and large ||z||, |C(z)| is O(]|||7°"~?) and
O(||z]l33"*?) for the multiquadric and inverse multiquadric radial basis functions
respectively.

3. The calculation of cardinal functions

The results of Jackson (1988) suggest that, when n=3 and {¢(r)=r |r€R*}, it is
possible for a quasi-interpolating function

v(z) =3 ved(llz—€ll:), zeR™ (41)
te2



where Z is a finite subset of 2" and {7¢ | £€ Z} is a set of constant coefficients, to
possess the diagonal dominance condition

1B(0) > X w0l (42)

te2Zn

In this case, with the normalization ¥(0) =1, one can deduce from the Gauss-Seidel
iteration
CtH(z) = C¥(z) — (CM(j) - o;} (= — j), zER™, (43)

Jj being a vector from 2" that depends on k, that a cardinal function of interpolation
exists. One uses this formula to generate a convergent sequence of approximating
functions {C**1(.) | k = 1,2,3,...} whose Limit satisfies {CI°}(¢) = éq¢ | £ € Z2"}.
This technique is mentioned because in this section we present a procedure for the
calculation of approximations to cardinal functions that includes an iteration of
Gauss-Seidel type that is derived from equation (43).

Our procedure begins by generating a quasi-interpolating function of the form
(41) in a way that is described later. In order to take advantage of symmetry, we
let Z= 27 for some small integer ¢ (usually ¢=3 or ¢=4), where we define Z to
be the set Z"N[—q, q]". Thus the coefficients of expression (41) are chosen to satisfy
vpe =7¢, where Pf is any vector in 2" whose components have moduli that are a
permutation of the moduli of the components of £. In this case we say that P¢ and
€ are equivalent. Each function Cl¥(.) has the form

CHz)= Y WHy(z -0, zerr, (44)

€zp

a typical value of the integer b being b=20, and each integer vector that is analogous
to j in equation (43) is restricted to the set Z'. Therefore in the limit k — oo we
try to achieve the conditions

CoI(e) = 6oty LEZ], (45)

which correspond to the equations (13) with Cy(-) = Cll(.). We see that expressions
(44) and (45) give a (2b+ 1)"x(2b+ 1)" system of linear equations in the coefficients

{ p£°°] | £€ Z}'} that is to be solved by a Gauss-Seidel iteration. We take advantage

of the equivalence symmetry p[,.?;’] = p(,°°] to reduce the number of unknowns to
1(b+1)(b+2) and L(b+1)(b+2)(b+ 3) when n=2 and n =3 respectively, which
are the only values of n in the numerical results of Section 4.

To begin the iteration we set C!)(:) = y(-) and k = 1. For each k the vector
j € Zp is chosen to maximize the residual {|C™(j) — &;| | 7 € 27'}. If this maximum
residual is less than a preset tolerance the calculation ends, and from now on we
use the notation Cy(-) to denote the final C!¥(.). Otherwise a step of Gauss-Seidel

type is applied to give Cl*+1(.), but equation (43) is not used as it stands because



it would lose the equivalence symmetry. Instead we define P(j) to be the subset of
Z that is composed of j and all other vectors that are equivalent to j, and we let
Cl*+1(.) be the function

Ctil(z) = CH(z) - {CH(j) ~ bo;} L (z-m), zeR™.  (46)
meP(j)

Because the symmetry implies {C*(m)=CH(j) | meP(j)} and because y(0)=1,
it can be shown that this iteration gives the inequality

Y ICHI@l) —bel < Y 1CM(O) - 6ol

tezp LeZP\P(j)
+ Y ICH(m)—bom|l Y (E-m). (47)
meP(j) teZp\{m)

Therefore convergence is guaranteed if condition (42) holds. The iterative procedure
terminates quite efficiently in all of the calculations that are mentioned in the next
section, but the diagonal dominance (42) is not obtained in some of these cases.

Several of these calculations require more than 24 hours of running time on a Sun
3/50 workstation, because of the number of terms that occur. For example, when
n=3, b=20 and Z = 23, the computation of Cy(z) for general z requires 103,823
different values of ¢(r) to be determined and each one involves a square root or a
logarithm. It is therefore important to plan the details of the algorithm carefully.
The following features are included in our iterative procedure.

Before beginning the iterations we calculate the values {(f) | £€ Z},} of the
quasi-interpolating function (41), and for each k we have available the coefficients
{pm | €€ 27}, the residuals {CH(8) — &4, | £€ 21} and the value of £ that gives
the residual of maximum modulus, which is the j of formula (46). In view of this
formula, the new coefficients {p, k1] | €€ 27\P(j)} are the same as the old ones

{u[kl | £€ ZP\P(7)} but the {y,] | £€P(5)} are overwritten by {“[k] oM | ee P(5)}
where pl¥l = Cl¥(5) — 8y;. Further, the residuals are overwritten by the numbers

{CH+1(8) — boe} = {CHM(8) — bae} — ™ 3 w(€—m), CeZP, (48)
meP(j)

and during this process the next value of j is determined. Because the values of
¥(-) in equation (48) are available explicitly, there are no calculations of radial basis
functions during the iterations and the amount of work per iteration is independent
of the number of terms in Z = Z7. In all of these operations we take advantage of the
equivalence symmetry The computer program stores and updates only one of the
coefficients {p, } and one of the residuals {C!*(¢) — &g} for each of the equivalence
sets P(¢), but, in order to save some work when equation (48) is applied, it stores
¥(¢) for every £ in Z"N[0, 2b]".



Another feature of this program is that it allows a range of values of b. They are
treated in ascending order, and we set ClU(.)=1(-) only when b is least. For each b
the iterations continue until the termination condition gives Cy(-), and this approx-
imation to the cardinal function is chosen as the Cl1l(-) of the next b. This feature
is useful because comparing tabulations of Cy(-) for several values of b provides a
good indication of the accuracy of these approximations to the cardinal function.
An example of such a comparison is considered later.

The coefficients {7, | £ € Z}} of the quasi-interpolating function (41) are de-
termined by a linear programming procedure that tries to achieve inequality (42)
subject to the normalization condition

$(0) = 1. (49)

Because the sum (42) is infinite, a finite integer a satisfying a > ¢ has to be chosen.
Then the coefficients are calculated to minimize the objective function

> il= X 1Y veelli - ella) - (50)

j€ZD JEZD teZ]

Except in the n =2 inverse multiquadric case, condition (49) is augmented by further
linear equality constraints that help |#(z)| to become small as [|z]| — oo.

Most of these constraints are contained in the statement that, except in the n =2
inverse multiquadric case, 1(-) shall have the form

ba)= T 4 6%(lz )}, zeR™, (51)

teZ;'_l =1
where 6?7 is the central difference operator

8io(llz—¢ll2) = ¢(llz—ei—Lll2) — 26(||z—€ll2) + d(llz+e:—¢lla), (52)

e; being the unit vector along the :-th coordinate direction of R". In addition to
helping the boundedness of 1(-), expression (51) has the strong advantage in the
linear, cubic and multiquadric cases that some cancellation can be done analytically
when ¥(z) is computed for large ||z||. For example, the identity

{(@i=1+a®}E —2{af+o®}E + {(z:+1) 4o}
=80’/ ([{(z =17 +a™}¥ {(m+1) +a’} + 2} +o” - 1]
x[{(z=1+a’} + 2{zl+*}} + {(z1+1) +7}H]) (53)
is highly useful for large z, when ¢(r)=r or /(r? +c?). Such identities improve the
accuracy of many of the numerical results of Section 4, particularly when ¢(r)=r

and n =3, because in this case some values of the cardinal function are given whose
moduli are less than 10-1°.
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We also include the constraints

S de= Y A48+ B+ 6662 =0, (54)
ez} | ez},
Yoo = Y n(@+G+6+G+65+85 -3 [EG+GE+EE]) =0 (55)
tez? €2y,

and

Y= Y w(BHE+E) = Y w(+6+6 - 3(66+66+64)

tezp, tezp | tezg_,

= T % (6G+0G+00 160+ B8 1008 + CE 2636 - 18248)
tez;_,

= T QU+ + 5660480 - 008G =0 (50)
ezy

for the thin plate spline when n = 2, the linear and multiquadric functions when
n=3, and the cubic radial basis function when n =3 respectively. We see that the
objective function (50) and all the constraints of each linear programming problem
provide the required symmetry {vp,=7¢ | P{ € P({)}, so we reduce the number of
variables of this calculation to the number of equivalence sets P(¢) in 27 or in 2},
the choice depending on whether we work with {+,} or with {§,}. We set ¢=3 in
the n =2 inverse multiquadric case and ¢ =4 otherwise. In all cases we let a=6 or
a=4 for n=2 or n=3 respectively. No difficulties occurred in the computations of
the quasi-interpolating functions () by some software that was developed by one
of the authors (MJDP) for the solution of general, linearly constrained, optimization
problems.

The purpose of each of the constraints (54), (55) and (56) is to optimize the
asymptotic decay properties of ¥(-). Specifically, they ensure that the integer j in
the bound .

(@)l = Ozl ), lzl|— oo, (57)

is as large as possible, subject to (-) having the form (51) and subject to the
integral condition that enough freedom remains in the coefficients {4 | {€ Z7_,} for
it to be possible for [p. ¥(z)dz to be nonzero. The details of equations (54)-(56)
can be derived from the Taylor series expansion of expression (51) for large ||z]| or
from the relations between asymptotic decay rates and Fourier transforms that are
mentioned in Section 2. Thus one finds the values =6, j =7 and ;=7 in the bound
(57) for the n = 2 thin plate spline, the n = 3 linear and multiquadric cases and
the n =3 cubic radial basis function respectively. Hence the right hand side of the
diagonal dominance condition (42) is finite. Further, when ¢ and a have the values
given in the previous paragraph, it seems that in each of these cases the ¥(-) from
the linear programming calculation actually satisfies inequality (42), provided that
¢ is not too large in the multiquadric radial basis function.




The integral condition that has just been mentioned keeps j finite in inequality
(57) by ruling out functions ¥(-) that are formed by applying high order divided
difference operators to {¢(||z|j2) | z € R"}, and, more importantly, it is a neces-
sary condition for inequality (42) to hold in each of the cases (9). To justify this
statement we deduce a contradiction if we have the diagonal dominance (42), ¥(-)
being an absolutely integrable function with [5. ¥(z) dz = 0. Inequality (42) allows
the Gauss-Seidel method, as mentioned in the first paragraph of this section, to
construct a function

chlz) = 3 ufpz-¢), zer", (58)
lEZ" .

that satisfies {C1°)(£) = 6o, | £€ 2"}, and the sum ¥y z» |4™] of moduli of coeffi-
cients is finite, which implies [ C!*®°l(z)dz = 0. The cardinal functions C(-) that
are studied in Section 2 for each of the cases (9), however, have the property that
the interpolation formula (5) gives s= f when f =1, which implies [z C(z)dz = 1.
Therefore Cl(.) is different from C(-). Due to the asymptotic decay properties of
C(-) and CI*®(.), given in Section 2 and deducible from the smoothness and abso-
lute integrability of ¥(:), we now have a contradiction to the uniqueness result in
Theorem 17 of Buhmann (1988b).

It follows from this argument that inequality (42) is satisfied only if ¥(-) is not
absolutely integrable or if [z () dz # 0. Remembering that the number of terms
of Z in equation (41) is finite, and that ¢(-) is one of the functions (9), the first
alternative would imply that the right hand side of expression (42) is a divergent
sum. Therefore diagonal dominance occurs only if ¥(-) is absolutely integrable
with a nonzero integral. It is proved in Jackson (1988), however, that no such
function exists in the linear case ¢(r) = r when n is even. It also follows from
his analysis that condition (42) cannot hold for the linear, cubic, multiquadric and
inverse multiquadric functions when n is even nor for the thin plate spline when n
is odd. Fortunately this lack of diagonal dominance does not prevent satisfactory
convergence of the Gauss-Seidel iteration in all the calculations of Section 4.

For example, in the inverse multiquadric case with ¢ = % and n = 2, the only
constraint in the linear programming calculation is the normalization condition (49).
With ¢=3 and a =6, the final value of the objective function (50) is 1.166, which
suggests that inequality (42) might hold, but the right hand side of this expression is
infinite because }_,¢ 22 7e = 0.0148. One can deduce from the bound (47), however,
that the Gauss-Seidel iteration converges for values of b up to 15, because the
calculated y(-) satisfies the condition

Y. w(€-m) <0919, meZf, (59)
€23 \{m}

the inequality being an equation when m = 0. In fact the largest value of b in
these calculations is b= 24, and then ¥ s¢23\(0) [¥(¢)| = 1.810. Even in this case
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Table 1  Some values of Cy(z) when ¢(r)=r and n=3

z b=4 b=5 b=6 b=7 b=8

(0.5,0,0) 0.399676 0.399676 0.399676  0.399676  0.399676
(1.5,0,0) -0.021868 -0.021868 -0.021868 -0.021868 -0.021868
(2.5,0,0) 8.7094_, 8.7095_, 8.7095_, 8.7095_, 8.7095_,
(3.50,0) 2.7883_¢ 1.6869_¢ 1.6721_¢ 1.6733_¢ 1.6733_¢
(4.5,0,0) -2.4931_5 -4.8588_s -5.1298_¢ <-5.1386_¢ -5.1381_
(5.5,0,0) -2.6420_s -6.6890_ T7.3171_; 6.9654_; 6.9279_;
(6.5,0,0) -6.8362_¢ -8.6200_¢ -1.3422_ -5.7800_s -5.9653_g
(7.5,0,0) -5.0118_, =-1.0026_s -1.5452_s -3.0887_, -3.3524_,0
(8.5,0,0) 1.6935_, -2.9567_s -2.3408_, -3.6663_; -7.4295_g

the convergence of the Gauss-Seidel iteration is entirely satisfactory, the number of
iterations to reduce the maximum residual by a factor of 10 on the 49x49 Frid being
about 300, where each iteration adjusts at most 8 of the coefficients {s!} because
the set P(j) contains at most 8 elements. If necessary we could have increased the
values of ¢ and a to ensure the convergence of our iterative procedure, but in all
cases the original values of ¢ and a give an adequate quasi-interpolating function
B

The dependence of Cy(-) on b is illustrated in Table 1 for the linear radial basis
function in three dimensions, where p, denotes px109. In this case C(-) has an
exponential asymptotic rate of decay of the form (27), while (-) satisfies condition
(57) with j=7. Looking across the rows of the table, we see that C,(z) settles down
very quickly as b increases. Therefore much of the last column reflects the decay of
the true cardinal function C(-). The later entries of the b=4 column, however, show
the algebraic rate of decay of Cy(-) that is inherited from (-).

To conclude this section we address the goodness of the approximation Cy(-) =
C(-), keeping in mind the results of Table 1. We argue that the decay rate of the
true cardinal function provides excellent accuracy in Cy(z)=C(z) for 0 < ||z||e < 3b,
although Cy(-) may decay much more slowly than C(-). This argument depends on
a conjecture, which in it strongest form asserts that, in each of the cases (9), every
bounded function has a unique bounded interpolant on 2", namely the function (5),
where C(-) is the inverse Fourier transform of expression (16). An equivalent claim
is that the zero function is the only bounded function in our space of approximations
that vanishes on Z™.

Our argument requires the choice of 1(-) and the convergence of the Gauss-
Seidel iteration to be such that {Cy(z) | z€ R™} is a bounded function, and we also
require the test for termination of the iterative procedure to be so fine that we can
suppose that C,(-) satisfies the equations

Co(l) = boe, LeZy. (60)




Then the error function
[y(z) = C(z) - Ci(z), z€R™, (61)

is uniformly bounded, and, because it is in the space of approximations, the conjec-
ture of the previous paragraph allows I';(-) to be equated to its interpolant, which
is the identity

Tu(z)= 3 T(§)C(z-¢), zeR", (62)

tezn

the right hand side being absolutely convergent because of the decay properties of
C(-) that are given in Section 2. Equations (60)-(62) and {C(f) = éac | £ € 27}
imply the bound

ITo(z)I < ITs( Ml 2= IC(z—0)l, z€R™, (63)
tezm\zp

and we draw our conclusions from the fact that £ ¢ 2 on the right hand side.
The main points are that only small values of |C(z — £)| occur in this absolutely
convergent sum when z is well inside the box ||z||. <b, and the magnitudes of these
small terms depend not on the decay rate of Cy(-) but on the decay rate of C(-).
Hence the true cardinal function dominates the approximation Cy(z)=C(z)—T(z)
to C(z) when 0< ||z]|co < 1b, but I'y(z) becomes important for larger values of || z||.
For example, I',(-) causes the final increases in |Cy(z)| in the b=7 column of Table
1. Moreover, because the top half of the b=8 column gives excellent approximations
to C(-), we see that the contributions from I'y(-) to the first row of Table 1 are
scaled by factors of at most 103, which provides the consistency across this row of
the table.

In the calculations of the next section the tolerance that stops the Gauss-Seidel
iteration is set to such a small number, typically 1016, that the discrepancies in
equation (60) due to Cy(-) # CI(.) are below the rounding errors of the given tables.
Further, when estimating each value of C(z) we increased b until the changes to Cy(z)
were less than the displayed accuracy. We believe, therefore, that the tabulations of
C(-) in Section 4 are close to the true cardinal functions of interpolation, and that
there is no need to refer back to the details of the approximations of the algorithm
of this section.

4. Numerical results and discussion

Table 2 presents some values of cardinal functions when n =2 in the linear, mul-
tiquadric, inverse multiquadric and thin plate spline cases. The lower precision in
the penultimate column is due to the rather slow convergence of the sequence of
approximations {Cy(:) | b=1,2,3,...} when ¢(r) = (r? + 1)-'/2. From a practical
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Table 2  Some values of C(z) when n=2

z (r)=r (ri+1)1/2 (r*+1)-12 r2logr
(0.5,0) 0.434190 0.560007 0.473146 0.535938
(1.5,0) -0.018506 -0.090066 -0.035897 -0.074666
(2.5,0) -1.0044_; 0.018726 3.4454 3 0.013094
(3.5,0) -4.6723_; -4.0942_; -1.7455_4 -2.4549_;
(4.5,0) -2.7134_5 9.2458 _4 8.525_5 4.8375_4
(5.5,0) -1.0850_s -2.1614_,4 3.095_5 -9.8539_s
(6.50)  -4.7241_¢ 5.0800_s 2.114_s 2.0522_s
(7.5,0) -2.3377_6 -1.2491_5 1.382_; -4.3399_¢
(8.5,0) -1.2608 _¢ 2.9014_¢ 9.64_¢ 9.2796 _;
(9.50)  -7.2707_,  -7.9513_; 6.97_¢ -2.0006_;
(10.50)  -4.4266_; 1.4590_7 5.20_6 4.3408_g

point of view the most important question is often ‘what is the greatest value of
|z]] such that |C(z)] >10-%", because for all larger values of ||z|| one may be able
to treat C(z) as negligible. Table 2 shows that, according to this criterion, the thin
plate spline is marginally better than the linear and multiquadric radial basis func-
tions, while the inverse multiquadric is least good. If larger values of |C(z)| can be
neglected, then ¢(r)=r seems to be the best of the four given cases, but c=7 is the
only c of this tabulation of multiquadric and inverse multiquadric cardinal functions.
If one preferred ¢(r) = (r? + 15)/2, for example, then one would have localization
properties that are similar to those of ¢(r) =r and one would have differentiability
too.

Because every z in Table 2 is on the first coordinate axis, Figures 1-4 present
some properties of the cardinal functions on R?. Each figure is constructed from
the values of C(-) on the 201 x 201 square grid with mesh size 0.1 on the square
|zlloo < 10. For each of the heights {h=10"* | k=1,2,3,...}, we calculated the
convex hull of the points of this mesh at which |C(z)| > h. The piecewise linear
curves in the figures are the boundaries of these convex hulls in the fourth quadrant,
the range of z being ||z|lc < 8. The shaded regions of the figures are the spaces
between the A = 10~ and h = 10~% curves, which show clearly that the inverse
multiquadric radial basis function is the least successful of the four cases.

For each radial basis function ¢(-), the spacings between the convex hull bound-
aries of the heights {h =10~% | k=1,2,3,...} indicate the asymptotic decay rate
of the cardinal function of interpolation, but, particularly in Figure 2, the range
||z|loc <8 is rather small for this purpose. When the cardinal function decays expo-
nentially, which implies a bound of the form (27), then the average spacing tends
to a constant, and this feature is shown well in Figure 4. In the other three cases,
however, the asymptotic decay rate is algebraic as suggested by inequality (25), so
the spacings between convex hull boundaries tend to diverge. This property is clear
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Table 3  Further values of C(z) when n=2
#(r)=(r* + })7 o(r)=r
z C(z) lzll3C(z) C(z) iz}l C()

(10.5,0) 1.4590_+ 0.01862 -4.4266_-; -0.05650
(11.5,0) -6.8753_s -0.01382 ~-2.8178_; -0.05668

(12.5,0) -4.396_¢ -0.00134 -1.8618_+ -0.05682
(13.5,0) -1.365_g -0.00612 -1.2698_+ -0.05694
(14.5,0) -6.928_g -0.00444 -8.899_5 -0.05704
(15.5,0) -5.698_¢ -0.00510 -6.386_g -0.05713

in Figures 1 and 3, but the multiquadric figure is more interesting because of its
similarity to the exponential decay of the thin plate spline for £ >10-5.

The shapes of the convex hull boundaries also deserve comment. We know from
equation (31) that they tend to be circular in the linear and multiquadric cases,
and we see this feature in Figure 1. Asymptotic circularity also occurs for inverse
multiquadrics (Buhmann, 1988b), but the range ||z|l < 8 is too small for it to
appear in Figures 2 and 3. In Figure 4, however, where the asymptotic decay rate
of C(-) is exponential, it seems that the convex hull boundaries tend to be diamond
shaped (||z]l; = constant). This property is obtained in cubic spline interpolation
on Z", because the exponential rate of decay along any line that is parallel to a
coordinate direction is independent of the displacement of the line from the origin.
Perhaps a similar property holds for radial basis function interpolation methods with
exponential decay, in which case it would be most appropriate to let ||z]| =||z|); in
the bound (27).

The figures so far fail to reflect the asymptotic behaviour of C(-) in the multi-
quadric case ¢(r)=(r? + 1)!/2. Indeed the signs of the entries in the middle column
of Table 2 alternate, but the theory of Section 2, in particular expressions (31) and
(38), show that C(z) is negative whenever ||z|| is large and z is away from the
points of the grid Z". Therefore Table 3 provides some more values of this cardinal
function. Now we see that the dominant part of C(z) can be a negative multiple of
lz|l7®, and that there is fair agreement with the factor —0.005212 in equation (39).
It is easier, however, to use tabulated values of C(-) to estimate the constants of
expression (32) in the ¢(r) =r case, partly because the first derivative discontinu-
ities of the radial basis function allow C(z) to be nonpositive for all moderate values
of ||z]l. Thus the last column of Table 3 shows good agreement with the number
—0.05747. In order to support the other constant of expression (32), we note that
at £=(9.5,9.5), for example, we have C(z)=-1.54x10"7 and ||z||3 C(z)=—0.0672.

Some values of cardinal functions in three dimensions are given in Table 4. The
asymptotic decay rate of C(-) when ¢(r)=r is particularly impressive, being about
a factor of 10 per data point. We recall from the last paragraph of Section 2 that




Table 4  Some values of C(z) when n=3

z Bri=r (P (P2 g(r)=r
(0.5,0,0) 0.399676 0.439796 0.545232 0.560447
(1.5,0,0)  -0.021868  -0.034425 -0.082773  -0.099110
(2.5,0,0) 8.7095_, 3.2618_; 0.017282 0.025761
(3.5,0,0) 1.6733_  -3.5220_4 -3.9703_, 7.5461_3
(4.5,0,0)  -5.1381_¢ 4.3009_s 9.8001_, 2.3896_5
(5.5,0,0) 6.9300_;  -5.7089_¢ -2.5541_,  -T7.9975_,
(6.5,0,0)  -6.1395_g 7.9934_; 6.9290_s 2.7841_,
(7.5,0,0) 3.5619_,  -1.1589_; -1.9363_s  -9.9717_
(8.5,0,0)  -1.9969_;, 1.7210_s 5.5319_¢ 3.6474_s
(9.5,0,0)  -2.8859_,,  -2.6008_ -1.6073_¢  -1.3556_
(10.5,0,0)  4.8041_;; 3.9834_50 4.7315_; 5.1017_¢

the multiquadric cardinal function decays like ||z||;!* as ||z|| — oo, and we see in
the table that this algebraic rate is sufficiently strong for the localization proper-
ties of multiquadric interpolation with moderate ¢ to compare favourably with the
exponential decay of the ¢(r) = r® case. Therefore, if one cannot tolerate the first
| derivative discontinuities in the interpolant when ¢(r)=r, it may be better to turn
to multiquadric radial basis functions instead of ¢(r)=r3, but the obvious choice for
a regular grid is cubic spline interpolation. In large calculations the amount of work
of cubic spline methods is orders of magnitude less than that of radial basis function
techniques, but perhaps the introduction of transputers and further research will
alleviate this gap. Therefore we note that the cubic spline decay rate of (2—v/3) per
data point is less good than the localization properties when ¢(r)=r, and that the
comparison with multiquadrics depends on ¢. All of these methods reproduce cubic
polynomials in the theoretical case of interpolation on an infinite grid, but only the
cubic spline has this property when the grid is finite.

The relevance of approximation on an infinite grid to finite grids has been studied
{ by Dyn and Jackson (private communication, 1988). It is important not only be-
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cause finiteness is necessary in practical calculations but also because of the gains in

efficiency that may be achievable by partitioning very large finite grids into smaller

ones. Therefore we give it some attention now. As at the end of Section 3, we relate

an interpolant s,(-) on the finite grid Z = Z"N[-b, b]* to our interpolant (5) on the
[ infinite grid Z™. The equation

s(z) = s(z) —n(z), z€R", (64)

| defines a function n(-) that is in the space of approximations. Therefore, assuming
a suitable uniqueness condition for interpolation on Z", we may equate 7n(-) to its




interpolant, which yields the identity

s(z)—s(z) = 3 {f(O)-s()}C(z—¢), zeR™ (65)

tezm\zp

Even if f(-) is bounded, the magnitude of s;(¢) for large ||¢|| depends on the growth
of ¢(r) as r — 0o. Thus, corresponding to the derivation of inequality (63) from
equation (62), we find a bound of the form

ls(z) = se(@) <8 X {1+6(lel)} IC(z —¢)l, zeR™, (66)

teZm\2p

where 3 is a constant, the sum being absolutely convergent for all of the cardinal
functions that are considered in Section 2. Again all the factors |{C(z — ¢)| are small
when z is well inside the box ||z|l.o £ b. Hence the extent to which s,(z) enjoys
the properties of s(x) depends on the distance from z to the set Z"\Z%. If n=3
and ¢(r)=r, for example, Table 4 suggests the strong result that |s(z) — sy(z)] is
0(10-%), where d = min{||z — €|, | £ € Z*\ 2]}, so there is rapid decay in the
perturbations to the approximation from the finiteness of the grid.

Tables 24 give excellent support to the assumptions on uniqueness of interpola-
tion that are crucial to equations (62) and (65). Here we have in mind that, for each
of the radial basis functions (9), the inverse Fourier transform of the function (16)
provides a unique cardinal function of the form (6) whose coefficients {c, | £€ Z"}
satisfy the asymptotic conditions of Theorem 17 of Buhmann (1988b). These con-
ditions correspond to the decay of |C(z)| as ||z|| — oo that is studied in Section 2.
If, however, the equations {C({) =&y, | £ € 2"} failed to define a unique bounded
C(-) of the form (6), then different attempts to calculate C(-) might yield different
cardinal functions. Now the method of the algorithm of Section 3 has nothing to
do with the inversion of Fourier transforms, and we even apply the Gauss-Seidel
iteration in some cases when the diagonal dominance (42) is not obtained. Thus
it is likely that our algorithm would find a cardinal function that is different from
the inverse transform of C () if it were possible to do so. Tables 2-4, however, seem
to confirm the asymptotic properties that are established in Section 2. Further,
when (-) satisfies the diagonal dominance condition (42), the proof of Lemma 10
of Buhmann (1988a) shows that the Gauss-Seidel iteration of Section 3 gives the
cardinal function that is the inverse Fourier transform of C(-). Therefore we believe
that the uniqueness assumptions are true.

Although the algorithm of Section 3 is suitable for calculating the cardinal func-
tions that we have studied, it is not recommended for interpolation to a general
function on a finite grid. Our reasons include the loss of equivalence symmetry and
the need for a range of quasi-interpolating functions ¥(-) in order to take account
of the effects of edges of the grid. Therefore some other algorithms are currently
under investigation at Cambridge, particularly the use of preconditioned conjugate




gradient methods for solving the interpolation equations. Such methods have al-
ready been applied successfully by Dyn, Levin and Rippa (1986) when the data are
not confined to a regular grid.

In conclusion we note that the asymptotic properties of cardinal functions are so
encouraging that many more questions deserve attention. Here are three examples.
If we estimate the interpolant s(z) in a way that ignores the function values { f(¢) |
€€ 2"} for large ||¢ — z||, is there a good way of making the estimate a continuous
function of z? If we extend the space of approximating functions to include low order
polynomials explicitly, can the interpolant on Z} provide not only reproduction of
these low order polynomials but also the localization properties that are noted in the
paragraph that includes expressions (64)-(66)? Although the analysis of Section 2 is
an application of Fourier techniques, do the main conclusions of this section require
interpolation on a regular grid? Clearly there is much practical and theoretical
work to be done, and it seems probable that it will yield some very powerful new
algorithms for multivariable approximation.
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THE FOURIER OPERATOR OF EVEN ORDER AND ITS APPLICATION
TO AN EXTREMUM PROBLEM IN INTERPOLATION

L. BRUTMAN
Department of Mathematics and Computer Science
University of Haifa

. Abstract The Fourier operator of even order §n is defined as a
projection of the family of continuous 2m-antiperiodic functions
onto the trigonometric polynomials of half-angles. It is shown that
this operator is a natural extension of the classical Fourier opera-

. tor and corresponds to the case where the dimension of the projec-

;tion subspace is even. The operator §n is used to extend a result

' of Szabados, concerning optimal choice of nodes for trigonometric

‘interpolation, to the case of an even number of nodes as well as to
the case of complex interpolation by algebraic polynomials on the

iunit circle.

‘Key words: Fourier operator, Minimum norm projection, Trigonometric

, interpolation.
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1. The Fourier operator of even order

Various problems of approximation theory involve the trigonometric

polynomials of half-angles

n
= 0 8
= I -1)— -1)—
hn(e) k=1[ckcos(Zk 1)2 + dksin(Zk 1)2]

Properties of these polynomials and their application to interpo-
lation and to the theory of quadrature were considered by Tureckii

(1960,1968). Recently (see Brutman and Pinkus (1980)) the polynomialsi

En(e) were found to be useful in proving the Erdos conjecture concern-

ing minimal norm interpolation on the unit circle for even number of
points. In the following the trigonometric polynomials of half-
angles are used in order to define an even-order analogue of the clas-
sical Fourier operator.

Let 62" be the Banach space of functions continuous and antiperiodic
‘on [0,27) (i.e. satisfying £(0) = -£(27)), equipped with the uniform

norm, and denote by ﬁn the following 2n-dimensional subspace of C21r

~ 0 9 2n-1)6 2n-1)6
Hn = span{sin53 cosE-,...,sin( ; ) . cos( ; *l*}

.1t 18 known that ﬁn is an orthogonal system on [0,2"). The Fourier- |

'type operator §n : C > ﬁn is defined by

27

. o 9 8
| (snf)(e) = kEl{ckcos(Zk-l)-z--+ dksin(Zk-l)Ei, (D
}where
‘] y 3% 8
i ¢ = ;of £(8)cos(2k-1) do,
! 1 27 8 (2)
; d, = ;of £(6)sin(2k-1)7 de.

f -
:The following integral representation of Sn holds

$

f
[

[l S JVE R TSN, e IR Bw e JR Vo)



[
’

Cpe

4
PO UL e G g

27

33

Theorem 1

. 1 2T .
(s £)(0) -;of £(1)D_(r-0)dr, (3)

where

sin né

~ n 0
Dn(e) = T cos(2k—1)§ = 531573757 . )

k=1

Note that the kernel Bn(e) in (3) is a natural extension of the
classical Dirichlet kernel Dm(e) = gin(m6/2)/2sin(6/2), m = 2n+l,

and corresponds to the case of even m. As a direct consequence of the

representation (3) we get

Corollary 1

. 2 ™2 | atn2n6 -
”Sn||= _'f sinb dé = n’

m
©

(5)

™

;Remark To the best of our knowledge, the quantities Bn appear for

"the first time in Szego (1921): "Mann kann die Konstanten

/2
, .% sin wll 46, m=o0,1,2,...

m 0 sin

'betrachten, welche sich fur ungerade m auf die Lebesgueschen Kon-

?stanten reduzieren." Szegg has proved the following representation

-]

16 ° 1,1 1 .1
E L= 4 vfl[l Frst Y mTinTT (6)

Wi

iwhich was used by Galkin (1971) to obtain the precise estimate
P

.

0.98% < r_ -y logm < 1. %)

The quantities Bn were also used by Geddes and Mason (1975) as an
upper bound for the norm of the Taylor projection of even order.
They gave the following formula

—
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o 2k-1
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which is analogous to the representation of the classical Lebesgue
constants due to Fejer (1910).

Continuing the analogy with the classical case we define the Fejer-

type operator ?n : 62n - ﬁn to be the arithmetic mean:

- 1 .~ ~ ~ ot

Fnsn{sl+sz+...+sn} s)
Then we have
Theorem 2

- 1 27

(F ) (0) = ;g £(1)q_ (r-e)dr, (10)
where

. sin r—1-'2r-1--es:l.n-%-9-

o (9) = . (11)

n 2 6

2sin 3

Note that in contrast to the classical case, the kermel Gn(e) is
not positive. Yet this is not surprising, since the operator ?n is
defined on the space éZw which does not contain positive functions.
. can be uniformly approximated by the Fejér-type pclynomials %n(e).
It can be shown by applying the classical result of Fejer (1904)

| that the answer to this question is affirmative, namely

' Theorem 3 The set H = {cos(8/2),8in(6/2),co8(368/2),51in(36/2),...}
;19 dense in C2n’

 Applying Theorem 3 and arguments analogous to those used for the

classical trigonometric polynomials, the following analog of the

i Marcinkiewicz-Zygmund-Berman identity can be proven.

|

Theorem 4 Let ﬁn be any projection from ézﬂonto ﬁn' Then

|
| 1 3 5
i TH of B (£(x-1),6+t)dt = (5_£)(6) (12)

This observation raises the natural question of whether every feézTT
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As a consequence of the above theorem we have the following minimal
norm property of §n (For the correspondingclassical results see
Losinskii (1948) and Cheney et al. (1969)).

Corollary 2

1511 < U2 | (13)

Moreover, the equality in {13} holds only if ﬁn =S .,
2. An interpolation-theoretical extremum problem.

Tureé¢kii (1968) posed the following problem: Let 0<8,.<6_<...<6, <27

01 2n

and let ck(e)-ck n(e), k=0, .,...,2n be the fundamental trigonometric
?
polynomials of degree n, i.e. such that tk(ej)=6k k,3=0,1,...,2n.

For what system of nodes {ek}izo will

j!

27 2n
= = P ©
L= 1,000y 058,) 0}' {kioltk(e)l }do, (0<p<=) (14)

be minimal? It was conjectured by Tureckii that the optimal solution
‘corresponds to the equidistant nodes. Schumacher (1976) proved this
conjecture in case p=l, as a corollary of a much more general theo-
irem. Szabados (1980) found a direct solution to the problem in the
case l<p<w, gpecifically he proved the following

‘Theorem 5 Let p > 1. The integral I (8s8y»---»0, ) is minimal iff
, the nodes are identical with the equidistant nodes ak-ka/(2n+1),
‘k=0,1,...y2n, or with their translation. Moreover,

| 2P 1 P
o T (8),0)5.458,) flnn(e)l de (15)

| By ea+PL 9
i

lwhere Dn(e) is the classical Dirichlet kernel.

! In the following we extend the above result to the case where the
%number of interpolatfon nodes is even. Let 0_<__61<62<...<92n < 27
!and denote by tk(e)-tk’n(e), ke=1,2,...,2n, the fundamental trigono-

|metric polynomials of half-angles, i.e. t eﬁn and Ek(ej)-s Let
|

k ki’
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I - Ip(el,ez,...,eZn) = of {kfllck(e)l }de (16)

The following result holds
Theorem 6 The integral fp(el,ez,...,BZn), p>1, is minimal 1ff
the nodes are identical with 8, = kn/n, k=0,1,...,2n~1, or with

k
their translation. Moreover

P 27
~ 2 ~ P
min I_(8,,8,,...,0, ) = —=—— [1|D (6)|"ds, Qa7)
1’72 2 -
% ° RN LA

where ﬁn(e) is the Dirichlet kernel corresonding to the trigonometric
polynomials of half-angles. The proof of this theorem, which is
based on (12), follows the same reasoning as the proof of Szabados.
Our final result concerns complex interpolation by algebraic
polynomials on the unit circle. Let zk=exp(iek), k=0,1,...,m be
m+l distinct points and let lk’m(z), k=0,.,...,m be the corresponding
, fundamental polynomials. It was proved by Brutman (1980) that

ie
|2 e )W o= Itk,n(e)l’ w=2n

k,
(18)

= |Ek,n(e)[, m=2n-1

‘Combining (18) with Theorems 4 and 5, we arrive at the following
» Theorem 7 The integral
27 m

] I (2,,2,0..052) = f { L |2
p 0’71 m 0 k=0

k’m(lie)'p}de,p > 1 (19)

is minimal 1£ff 2

k" exp [{kn/ (m+1)+a ), k=0,1,...,m, some a. Moreover

( y -2 fzwb (8)|P (20)
min I (2. .,Z2.,5.¢..52 ® ———— 9 de 20
2, p 0°°1 m (m+1)P-1 o m

where Dm(e)-sin(mOIZ)/231n(6/2) is a generalized Dirichlet kermel.
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ON MULTIVARIATE POLYNOMIAL INTERPOLATION

N. DYNt, A. RON*
tSchool of Mathematical Sciences, Tel Aviv University
*Department of Computer Science, University of Wisconsin-Madison

Abstract A class of spaces of multivariate polynomials, closed under differentiation, is
studied and corresponding classes of well posed Hermite-type interpolation problems are
presented. All Hermite-type problems are limits of well posed Lagrange problems.

The results are based on a duality between certain spaces of multivariate exponential-
polynomials { and corresponding spaces of multivariate polynomials P, used by Dyn and
Ron (1988) to establish the approximation order of the span of translates of exponential
box splines. In the interpolation theory P is the space of interpolating polynomials and
‘H characterizes the interpolation points and the interpolation conditions, both spaces
being defined in terms of a set of hyperplanes in IR’.

This geometric approach extends the work of Chung and Yao (1977) on Lagrange
interpolation, and also a subset of the Hermite-type problems considered via the Newton
scheme, by several authors (see Gasca and Maetzu (1982) and references therein). For a
different approach to the interpolation problem see Chui and Lai (1988).

It is the systematic and unified analysis of a wide class of interpolation problems
which is the main contribution of this paper to the study of multivariate polynomial
interpolation.

Keywords: Multivariate interpolation, multivariate polynomials, Hermite-type interpo-
lation.
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1. The Interpolating Polynomial Spaces

The spaces of interpolating polynomials we consider here are more general than the
total degree polynomials x,, (polynomials of degree < m), and are still closed under
differentiation.

Given a set of directions A = {al,...,a"} C IR*, with the property spanA = IR’,

consider the space of polynomials

P(A) = span{ H

i€l

(a* - x) I Ie S(A)} (1)

where S(A) consists of index sets corresponding to “smalil enough” subsets of A, namely
S(A)={Ic{1,...,n}|span{a’|i¢ I} = R*} . (2)

By choosing I € S(A) such that {1,...,n}\I is a basis of IR®, we conclude that
P(A) C Ty - (3)

To see that P(A) is closed under differentiation, observe that

;%T H(a" -X) = E a; H(a‘ -x), (4)
7 ser ter €1
and that if I € S(A) then any subset of I is in S(A4).
A more involved analysis is required in order to show the following two properties
of P(A), demonstrated in Dyn and Ron (1988):
(a) Letd =d(A) =min{|I| | I C {1,...,n} , I ¢ S(A)}. Then 74— C P(A).
(b) The dimension of P(A) equals the number of bases that can be formed from A.
Combining (a) and (3) we conclude that

%a-1 CP(A)C Ty . (5)

If al,...,a™ are in “general position”, namely any s vectors among a!,...,a™ form a
basis of IR’, then it is easy to see that d = n — s + 1. Hence P(A) = r,_,.
To introduce a basis of P(A), consider n hyperplanes

Hi={ze R |a' x=%}, i=1,...,n, (6)
determined by I' = (1,...,7a) € IR". For each v € IR* define

Iv={i€{l,...,n}lveﬂt}. (N




[P,

and consider the set of intersection points of H,,..., H,,

V(A,T)={ve R*|spand, = R}, Ay ={a‘|ie L} . (8)

Choosing I so that |[,| = s for v € V(A.T), where {I,| denotes the cardinality of I, we
conclude from (b) that

dimP(A) = [V(A,T)]. (9)

Furthermore, the following polynomials

(a'-x— )
pv(x) = > ve V(A.T), (10)
,.:‘[;‘I[' (a'-v—1v)

are linearly independent, since

0 u#v,

py(u) = { vi,u € V(A.T) ., (11)
1 u=v.

and hence constitute a basis of P(A).

The pair (A,T) is termed “simple” (for simple intersection points as opposed to
multiple ones) if [I,| = s for all ve V(A,T).

Remark 1 It is shown by Ron (1988) that for fixed A the set of all ' € IR™ such that
(A,T) is simple, is dense in R".

The explicit form (10) of a basis of P(A) indicates that the following result holds.

Proposition 1 P(A) consists of polynomials of degree < n — s, which are of degree
<n-—-s-— |{z €{l,...,n}|a‘e spa.n{y}}] +1 along hyperplanes of the form y-x = A,
y € A. ) € R. Furthermore, let Y = {y',...,y*}, be k < s pairwise distinct directions
in A. Then the degree of any p € P(A) along the intersection of k hyperplanes of the

form

yj-x=;lj . j=1....,k, Hi,.-. ux € R, (12)

is at most

n-s—|{ie{l,....n}|a' e (¥} }| +dim(Y) . (13)

where {Y) = spanY.




Proof Since for (A,I') simple, and v € V(A,T), {a’ | i € I} is a basis of IR*, each py in
(10) consists of at least |{i € {1,...,n} | a* € span{y}}| — 1 factors which are constant
along y - x = A, A € IR. Similarly, one can count the constant factors in py of (10) along
the intersection of the hyperplanes (12), to conclude (13).

Remark 2 The space P(A) consists of all polynomials over IR® with the properties stated
in Proposition 1. This will be shown elsewhere.

2. The Interpolation Problems

In this section we present a class of interpolation problems which are unisolvent in P(A)
for fixed A. The interpolation points and the data at each point, which is of Hermite
type, are determined by the choice of I' = (71,...,7.) € IR". The set of interpolation
points consists of all points of intersection of at least s of the hyperplanes (6), namely, it
is the set denoted by V(A,T'). To define the interpolation conditions at each v € V(A4,T),

we consider the set of directions related to v
A, ={a'|ie L}, (14)
and a corresponding polynomial space defined by

K(Av) = {pex|[[]a*-D)p=0, I ¢S(aV)}, (15)
i€l
where D = (3:—‘-, cee ,3:—.). Since each I in (15) satisfies |I| > d, = d(Ay), it is clear that
x4, -1 C K(Ay). The space K(Ay) is closed under differentiation since D™ commutes
with any polynomial in D. In terms of K(Ay) the interpolation conditions at v are

[a(D)y](v) = [ DYf](v), q€K(AV), (16)

where f is smooth enough, and ¢(D) is obtained from the polynomial ¢(x) by replacing
the vector x by the vector D. With these definitions we can introduce the interpolation
problem determined by A and I':

Find p € P(A) satisfying (16) for all v € V(A,T). (17

The solvability of (17) is due to the following result from Dyn and Ron (1988):




Theorem 1 The spaces P(A) and the space

H(AT)= @ {e™4x)|qeK(A.)}, (18)
vEV(AT)

are dual to each other under the pairing

[p(D)R)(0) = [e(D)p](v), pe P(A), h(x)=e"%¢(x)€ H(A,T). (19)

Corollary 1 There exists a unique p € P(A) solving the interpolation problem (17).

It follows from Theorem 1 that K(Ay) is dual to P(Ay) in the sense of (19), and by
(b) dim K(Ay) = # of bases in A,. Furthermore, since P(4,) C T|4.|-s We conclude
that K(Ay) C 7|4, |-,. Hence

Ta,-1 CK(Av) C T4, )-s » (20)

in analogy {0 (5). Moreover, if the directions in A, are in general position then K(4,) =

#'Avl_,.

Corollary 2 Let I be such that for each v € V(A,T) the directions in A, are in general

position. Then the interpolation conditions in (16) are pure Hermite of the form

D™p(v) = D™ f(v), |m|=im.~5|A.|—s,m.~20 ,i=1,...,8. (21)

i=1

In case A consists of directions in general position, then so does each A,, v €
V(A,T), and the interpolation problem becomes: Find p € r,_, satisfying (21) for each
v € V(A,T). In R? the conditions on T' in Corollary 2 are satisfied if v; # Ay; whenever
a = daf, A€ R,i#j,i,j€ {l,...,n}, namely if the hyperplanes H,,...,H, in (6)
are pairwise disjoint.

An especially interesting interpolation problem is the Lagrange interpolation, ob-
tained when (A,T) is simple. In this case |A4,| = s, K(A,) = 7o, and p satisfies
p(v) = f(v), v € V(A,T). The solution is given explicitly, in terms of the basis (10), as

He)= Y f(¥)pe(=). (22)

veV(AT)




rF S

This together with Remark 1 implies that the interpolation problem (17) is a limit of a
sequence of Lagrange interpolation problems.

For general (A,T') the interpolation conditions (16) at v € V(A,T) are determined
by the structure of a chosen basis of K(Ay). The construction of such bases is discussed
by Dahmen (this volume) and by deBoor and Ron (1988).

3. Examples

The first two examples are in R? and can be displayed graphically. We consider
two Lagrange interpolation problems, for the same set of directions A, and then two

Hermite-type problems, obtained as limits of the Lagrange problems.

Example 1 Let A = {al,...,a%} with a! = a* = (1,0), a? = a® = (0,1), a® = a® =
(1,1), and let T = (0,0,1,3 +¢,3 +¢,3) for £ > 0. The space P(A) is of dimension
12 and consists of quartic polynomials which reduce to cubics along hyperplanes of the

form a‘ - x = const. The hyperplanes a* - x = y;, i = 1,...,6 are depicted in Figure 1,
together with the twelve interpolation points. Since each interpolation point belongs to
exactly two hyperplanes, (A,T') is simple, and the data at each point is just the function
value.

For ¢ = 0 the three interpolation points v! = (1,0), v? = (0,1), v® = (0,0) remain
unchanged together with the corresponding A,:. Hence also in this problem only function
values are required at v, i = 1,2,3. Each of the other three interpolation points v =
(3,0), v* = (0,3), v® = (3,3) is the limit of three interpolation points in the case
€ > 0, with A« = {a',a?,a%}, i = 4,5,6. Thus K(A,:) = m, i = 4,5,6, and the

Hermite conditions are of the form

(f-p)(v)=0 , %(f—p)(v‘ho , 5%;(}‘-1’)(\”')=0 , i=4,56.

Example 2 Let A be as in Example 1 and let T = (0,0,1,¢,6,1 — ¢) for ¢ > 0. The
space P(A) is as in Example 1. The hyperplanes a* - x = 7;, i = 1,...,6 are depicted in
Figure 2. These hyperplanes have twelve intersection points, each belonging to exactly
two hyperplanes. Thus for ¢ > 0, (4,T) is simple and the interpolation is of Lagrange
type.

In the limit £ — 0, there are only three interpolation points: v! = (1,0), v? = (0,1),
v® = (0,0), each being the limit of four interpolation points in the case ¢ > 0. The
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Figure ] Figure 2

interpolation conditions at v* are determined by K(Ay+) where
Ay ={al,a*?|j#i, j=1,23}.

By (15) )
K(A,a):{p&ﬂl(&'-D)’p:O, J#1, j=1a293}

3

= span{1,z;,22, [[(n? - %)} ,
=1
ié

where n* - a* = 0, i = 1,2,3. Hence the interpolation conditions are

(f - p)v) =0, %(f— (V) =0, ;,,%(f —p(v) =0, i=123

6’ 3’ az az
(a_z?_a—zlazz)(f'l’)(vl)zo y (Eg-m>(f_p)(v2)=0’

9?
0z, 0z,
This interpolation problem is a special case of the one solved by Gregory (1985),

(f-pUv")=0.

where the interpolation points are the vertices of a simplex in IR*, and A consists of s+ 1
directions in general position each repeated N > 2 times. The next example deals with

an extended version of this case in terms of our analysis.

Example3 Let B = {b',...,b**'} C IR’ be in general position and let (B,A) be
simple, with A = (61,...,0,41) € R**'. Given s + 1 positive integers my, ..., My41,
n= E::ll my, consider A = {al,...,a"} consisting of b’ repeated m; times, and ' =

~_



(-

(1,.--27n) consisting of §; repeated m; times, i = 1,...,s+ 1. The hyperplanes H; =
{x|b'-x=46}i=1,..,8+1, intersect at s + 1 points v',...,v**! forming the
vertices of a simplex. Let v' denote the intersection of the s hyperplanes H;, j # i,
j=1,...,8+ 1. Then A,: consists of b7 repeated m; times j #,j=1,...,s+ 1, and
by (15)

K(Ay) = {pe x | (b3 -D)Y™p=0,j#i,j= L,...,s+1}.

The dimension of K(A,«) is the number of bases in A,: given by M; = H;:: i M-

Now the edge of the simplex connecting vertices v¢ and v¢ belongs to the intersection
of the hyperplanes Hj, j # i,f, j = 1,...,s+ 1. Hence (v —v%).bé =0, j # i,¢,
j=1,...,8+ 1, from which we conclude that any polynomial of the form

241 .
[T -v)-x™, O0<ar<me, t=1,..,541,

4=
(1 1

is annihilated by (b7- D)™, j # i, and therefore belongs to K(A,:). The number of these
polynomials is M; and they are linearly independent, thus forming a basis of K(Ay). In
terms of this basis the Hermite type conditions at v* are

s+l

H [(v‘—vj)-D]a’(f—p)(vi)=0 y 0<aj<mj,j#i,j=1,...,8+1.

i=1
ini
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ALGORITHMS FOR THE CONSTRUCTION OF DATA DEPENDENT
TRIANGULATIONS

NIRA DYN, DAVID LEVIN, SAMUEL RIPPA
School of Mathematical Sciences
Sackler Faculty of Exact Sciences

Tel-Aviv University

Abstract Given a set of data points in R? and corresponding data values it is clear that
the quality of a piecewise linear interpolation over triangles depends on the specific tri-
angulation of the data points. While conventional triangulation methods depend only
on the distribution of the data points in R%, we suggested in [1} the construction of
triangulations which depend on the data values as well. In this paper we present and
compare some algorithms for the construction of such data dependent triangulations.

Key words : Triangulation, Data dependent triangulation, Piecewise linear interpolation.

1 Introduction

Let V = {v; = (z;,3:) € R? i = 1,...,N} be a set of distinct and non-collinear data
points and F = (Fi,..., Fy) a(real) data vector. Suppose furthermore that 2 D Visa
region with a polygonal boundary dQ with all vertices in V.

Definition 1 A set T = {T;}} of non-degenerate, open, triangles is a triangulation of
Qif:

o V is the set of all vertices of triangles in T.

¢ Every edge of a triangle in T contains only two points from V', namely its endpoints,

e U=U, T, TNT, =0, i #j.

-~




Given a triangulation T of 2 we consider the space §9(T') of piecewise linear poly-

nomials defined over T, i.e.
SUT) = {g € CUQ)| glr, € M}

where II; is the three dimensional space of linear polynomials. Finally we denote by fr

the unique function from S?(T) interpolating F, i.e.
fr(ziyi)=F,i=1,...,N.

A linear function is uniquely defined by its values at the three vertices of a triangle
and thus a Piecewise Linear Interpolating Surface (PLIS) is uniquely determined by the
choice of a specific triangulation of (2. It is clear that the quality of approximation by
a PLIS depends on the particular choice of the triangulation and naturally we look for
an optimal triangulation. The classical theory says that long, thin, triangles should be
avoided and that triangles should be as equiangular as possible ([4]). A popular choice
of triangulation for interpolation schemes is the well known Delaunay triangulation (see
e.g. [4]) which, among other nice properties, is a MaxMin triangulation, i.e. it is a
triangulation T* maximizing the quantity

ofT) = %‘é’}( smallest angle in T;).

The Delaunay triangulation, as various others in use, depends only on the set V'
and not on the data vector F. In [1] we suggested the use of data dependent criteria
for measuring the quality of a triangulation. These criteria depend on the set V of
data points and on the data vector £ as well. Given a data dependent criterion and
an initial triangulation, a data dependent triangulation T' may be constructed by the
familiar procedure of swapping diagonals of convex quadrilaterals in order to get better
triangulations where “better” should be interpreted as better with respect to the given
data dependent criterion. Numerical tests, reported in [1], demonstrate very clearly
that PLISes defined over data dependent triangulations provide better approximation,
to various test functions, than the PLIS defined over the Delaunay triangulation of the
same set of data points.

In the present paper we discuss algorithms for constructing data dependent trian-
gulations. In §2 the concept of data dependent triangulations is presented as well as
two algorithms for their construction. In order to simplify the presentation we use an
example rather than a more detailed definition to illustrate the ideas involved. It is

straightforward to extend the results to the more general setting of [1]. The most basic

l.‘l

i )l
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algorithm for the construction of data dependent triangulations is Lawson’s LOP algo-
rithm which swaps the diagonals of convex quadrilaterals in order to decrease a certain
cost function. The Modified LOP (MLOP) suggested here defines the specific order of
swapping edges. Two strategies for swapping edges are presented in §3 and numerical

experiments comparing the LOP and MLOP algorithms are reviewed in §4.

2 Data dependent triangulations

Let V be a fixed set of data points, F' a data vector, T a triangulation of 2 and suppose
that fr is the piecewise linear interpolant to F. For each interior edge e of T a real cost
function S(fr,e) is assigned. and the index vector Nt, of length q, containing the cost

functions of all interior edges is constructed:

Nt =(S(fr.e1)s....5(fT,€q))-

The cost function of a triangulation is defined to be:

q

e(fr) = Y_ISUfr,eil.

=1

Two examples for cost functions are : (a) Jump in Normal Derivative (JND) Si( fr, e},
the (magnitude of the) jump in the normal derivative of fr across the edge e and (b)
Angle Between Normals (ABN) S3( fr,e), the angle between the normal vectors to the
two facets of the surface fr on both sides of the edge e. These cost functions, and others,

are discussed in more detail in (1].

Definition 2 A triangulation T’ of Q is called optimal if ¢( f) < c(fr) for every tri-
angulation T of Q.

In most practical situations it is very difficult to obtain a globally optimal triangula-
tion so here we consider only locally optimal triangulations. Let T be a triangulation of
Q, e an interior edge of T and @ a quadrilateral formed from the two triangles having e as
a common edge. If @ is strictly convex then there are two possible ways of triangulating

@ (see Figure 1 ).

Definition 3 An edge e is called locally optimal if one of the following conditions holds:

(a) Q is not strictly convez or (b) Q is strictly convez and c(fr) < c(fr') where T’ is

obtained from T by replacing e by the other diagonal of Q.
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Figure 1: Two triangulations of a convex quadrilateral

Definition 4 A locally optimal triangulation of Q is a triangulation T’ in which all

edges are locally optimal.

The basic algorithm for constructing locally optimal triangulations is the Local Op-

timization Procedure (LOP) suggested by Lawson [3]:

Algorithm 1 LOP

1. Construct an initial triangulation T1® of Q and set T — T9.
2. If T is locally optimal, end the procedure; else go to step 3.

3. Let e be an interior edge of T which is not locally optimal and let @ be the strictly
convex quadrilateral formed from the two triangles in T' having e as a common

edge.

(a) Swap diagonals of Q: Replace e by the other diagonal of Q, therefore trans-

forming T into a triangulation T”

(b) Set T — T’ and go to step 2.

Each time an edge swap occurs, the cost function of the resulting triangulation is strictly
smaller than that of the previous one. Since the number of triangulations of  is finite,
the LOP converges, after a finite number of edge swaps, to a locally optimal triangulation.

The above LOP seems to work very well in the numerical experiments reported in
(1], but it has a major drawback: the resulting locally optimal triangulation depends
on the labelling of the data points and on the software irnplementation of the LOP.
We would like to control more closely the order in which edges are swapped during the

LOP iterations in order to obtain a better defined algorithm. Given a triangulation T




we consider the set E(T) of all the interior edges € of T which are not locally optimal.

Suppose that E(T) # @ and assume that the edges are labeled such that:
E(T) = {61,62, P ‘ek(T)}

A swap of some edge e; , 1 < j < k(T), will transform T into a triangulation TO). The
Modified LOP (MLOP) selects. at each step from the set E{T) . the next edge to be
swapped according to a predetermined swapping strategy. In §3 we discuss and compare
some selection strategies. Suppose that the edge e, € E(T) is swapped. Then E(T'?))
has to be computed for the next iteration. This can be done efficiently since E(T?))
and E(T) differ only in edges belonging either to the two triangles T; and T; which
have e, as a common edge or in edges belonging to triangles sharing an edge with T; or
T;. Thus at most 12 edges, which may be in one of the sets and not in the other, need
to be checked in each MLOP iteration (after the edge swap, e, becomes locally optimal

and thus is excluded from the set E(T®))).

3 Selecting the edges to swap

The first selection strategy is the AMazimal Reduction (MR) strategy. Since a data
dependent criterion selects triangulations which minimize the cost function ¢( fr), a
natural strategy for the MLOP is to swap, in each iteration. the edge e, € E(T) for

which the ¢( fp)) is minimal. i.e.

c(frm) Lelfrn) 1 <5< k(T).

The second strategy is based on the observation that often the LOP/MLOP terminates
in a poor local minimum since many of the edges become interior to non-convex quadri-
laterals. To avoid this we would like to swap the edges in a way which will leave the
maximum possible number of convex quadrilaterals for the next MLOP iteration. Let

us divide the set E(T) into classes of edges according to the value of
m; = [TV - I(T), j=1,...,kT),
where I(T) is the number of convex quadrilaterals in the triangulation T. Let
E(T) C E(T)

be the set of edges e; € E(T) for which m; is greatest. The Mazimal Opportunity
(MO) strategy chooses the next edge €, to swap from the set E'(T) such that c(fpm)




-

LIS
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is minimal, i.e.
c(fpm) < clfrn), € € E(T).

For comparison we also generate the “worst possible” sequence of edge swaps. This
is obtained by the AMinimal Reduction (MinR) strategy which is just the opposite of the
Maximal Reduction strategy, i.c. we choose the next edge to swap so that the reduction

in the value of the cost function is minimized.

4 Numerical experiments

In our numerical experiments two sets of data points taken from Franke ([2]) were used.
The first set contains 100 data points distributed more or less uniformly over the unit
square, while the second set, with 33 data points, was designed with larger variations
in the density of the data points. The data vectors F' = (Fy,..., Fy) were obtained by
evaluating various test functions, also used in [1], at the data points.

Several data dependent criteria were tested including those relating to the JND and
ABN cost functions mentioned in §2 as well as others presented in [1]. For each data set
and data dependent criterion, several data dependent triangulations were generated by

using different strategies for swapping the edges:
o LOP - No strategy, edges are swapped according to their labelling in the edge list.
e MLOP-MR - Edges are swapped according to the Maximal Reduction strategy.
e MLOP-MO - Edges are swapped according to the Maximal Opportunity strategy.
¢ MLOP-MinR - Edges are swapped according to the Minimal Reduction strategy.

The Delaunay triangulation of the data points was used in all cases as an initial trian-
gulation.

On each triangulation, the piecewise linear function fr, interpolating the data vector
F, was constructed, and the error between fr and the test function which generates ¥
was computed on a grid of 33 X 33 nodes. The mean, root mean square and maximum
of these errors were tabulated along with the value of the cost function and the num-
ber of edge swaps needed for convergence of the LOP/MLOP tc the data dependent
triangulation.

In the numerical experiments it became clear that the order in which edges are
swapped during LOP/MLOP iterations may have a large influence on the final locally

optimal triangulation in terms of the quality of approximation to the test functions and



the value of the cost function of the locally optimal triangulation. It was found that the
value of the JND and ABN cost functions of a triangulation is usually a good indicator
to the quality of approximation to the test functions: a PLIS defined over a low cost
triangulation (for which these cost functions have small values) usually provides a better
approximation than a PLIS defined on a high cost triangulation.

The MLOP with the MR edge swapping strategy performed quite well in general. The
resulting data dependent triangulations were, in most cases, comparable or better than
data dependent triangulations resulting from other strategies of edge swapping. When we
say “better” we mean that a better approximation to the test functions was achieved.
The MLOP-MR triangulation was in most cases the triangulation which attains the
smallest value of the cost function. Also the MLOP-MR converges in the fewest number
of edge swaps and thus is the most efficient. In view of these reasons this is the scheme
of our choice.

The MLOP-MO strategy was comparable to the MLOP-MR strategy but is more
difficult to program and thus we do not recommend the use of it.

The MLOP with the MinR strategy did produce in most cases the worst data depen-
dent triangulation of all and used the largest number of edge swaps. The MLOP-MinR
triangulation demonstrates that there is a sequence of edge swaps which can lead to very
bad data dependent triangulations.

As can be expected from the above observations, the LOP swapping according to
labelling resulted in good and bad triangulations depending on the labelling used, the
triangulation criterion and the test function. The results are usually quite acceptable but
often worse than the MLOP-MR triangulation and sometimes much worse. There are
advantages, however, in using the LOP since its programming is simpler and it requires
less computer storage than the MLOP for which the list E(T) of edges has to be stored
and maintained.

We note that none of the above strategies performed well in all cases. For any of
these strategies there are examples of poor data dependent triangulations generated by
it. It may be interesting to look for other heuristic strategies for edge swapping.

An example of data dependent triangulation, taken from [1], concludes this paper.
The cliff function F = (tanh{9y — 9z) + 1)/9 (see Figure 2), was sampled on a set of
33 data points. The Delaunay triangulation of the set of data points and the related
PLIS are displayed in Ficure 3. A data dependent triangulation, based on the JND cost
function of §2, and the PLIS defined over it are displayed in Figure 4. These pictures

demonstrate very clearly the advantage in using data dependent triangulations.
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Figure 4: A data dependent triangulation and the PLIS defined over it
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ALGORITAMS FOR COMPUTING BEST PARAMETRIC CUBIC INTERPOLATION i
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:5 Abstract We consider the problem of finding a curve passing through 'i
-i prescribed points inIRd such that the kinetic energy of particle -
:5 moving along this curve is minimized. Recently uniqueness of the ) o
%9 solution of this problem has been established by the second author. Eé
Eé In this contribution algorithms for computing the solution are o6
Eg devised and their (global) convergence properties studied. E?
T Key words: Best interpolation, cubic spline curves, constrained Ef ®
fg minimization, stationary points, projected gradient method, Newton f
M i 4
143 Method. 0
15 12
6 13
T i ®
;g 1. Introduction. The problem of best parametric interpolation of : jg
;0 given data {zi}gsl in'Rg is the following: find a function 1;
j% i s(t) € At;(o,l), the space of'Ré-valued functions on [0,1] with 1 %f
13 components 1n I,;(a,b), which attains 1l o
14 1 10
15 Loy, 2 K °
3 inf inf {(f 11£7(0)11°de « £€L0(0,1),£(c )=y, , 1Si<n}. (1) 2
+7 t o -
48
19 The first infimum runs over all sequences t of nodes satisfying = ®
z0 4
z poos
A 0=t <t2<...<tn-1, (2) T
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and the norm || || in (1) denotes the usual Euclidean norm in ]Rd. 1f
one considers only tne second infimum in (1) the problem reduces to
the classical problem of best interpolation in spline theory. For

the motivation of the general problem we refer to [5], [3] and [4].

In [3] and [4] the uniqueness of the solution of (1) in the

"

cubic case k=2 is proved (d=1 in [3] and general d in [4]) under 2

the condition

e e de

<t

¥ *Ziﬂ s 1<1i<n-1, (3

;1;
19
on the data. -
In this note we describe two types of convergent algorithm for R
computing the solution s$*(t) of (1) in the case k =2. First we o
summarize some well-known facts and the relevant results of [4]. For
fixed t the inner infimum in (1) is attained by a cubic spline :
function s(t) whose second derivative is )
53
n-2 .
" - =
s"(t) = T oa; N (), (%) SR
i=] s
where the N, 2(t) denote the piecewise linear B-splines with knots
. 2
in t satisfying 21
= <3.i<n- .
Ni,Z(tj) 6j,i+l’ 1<j,i€n-2 . -
d .6
The coefficients ai€R in (4) are therefore equal to s"(ti+|). L
. N .. . - i4d
They are determined by the tridiagonal lincar system 12
e
n-2 Y 5 ,'i
£ G,.a, =z =17 - , w.isy. -y, (5) ,‘i(\
i) 111 3 hj+l hJ 3 1+1 . o
2
where )
; A
o .S
2n + My ) G i
= h e . 1-31 = . - |
Gij max(i,}) , l[i-jl =1, hi : tiH ti’ (6) | 3
o __‘__,___Aogﬁhierwise' ! t



d
_ - . ®
We can write (5) in matrix form as
- CA=2 ¢
. . = °
- if we introduce the vectors -
i
‘_ A = (il,...,én_z), E! (31""’51'1-2)' l 4.3
o . . g P P
22 Furthermore one can easily verify 41
NE 40
15 1 2 {39
1A JHs"®)1de = <a,0a> =<A,Z>, (8) 39
- o 3T
L4 24
' where < , > denotes the obvious scalar product. From this one con- b ®
= cludes that the infimum problem (1) is equivalent to '}
inf {F(h) : F(h) :=<A,Z>, GA =2Z>, CON
T h€EK L
-2 he 29 g
29 where 2‘?
28 . n-1 26
29 K := {h€ER th=(t,...,h, ),h. >0, £ h,=1}. (10) z3
h - -~ 1 n—] 1 . 1 -
: i=} 24
J3 Hence a solution of (1) is given by a pair (h, A(h)), where A=A(h) ,j ;I
I3 satisfies (7) and h the equations for a critical point of F(h) in K. 20
P - T a
1 e These equations read N
7 2 - L
Z T. !
i3 oF . P16
39 0= ) +_3T- A - h2 - (st ISJ Sn—l, (]la) . l:
40 ] j 14
41 n~1 113
42 l= I h,, (11b) 12
43 j=1 11 ®
44 t10
22 ~ with Lagrangian parameter A €ER. For the quantities in (11) one has a
roR
47 the explicit expressions (with a,=a_* 0) |-
48 ' 6
49 2 3z < °
50 Tj 1= - hj <A, T > = (ﬁj-—l - Ej ’zj)' (12a) | 3
51 J 3
52 2

53
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ap = < Aagp- A2 =3 M(@gap + @y )+ (a5,3, )] (12b)

Here (, ) denotes the usual scalar product in Rd.
The equations (11) together with (7) form a nonlinear system of

equations for h€K. In [4] the following was proved:

Theorem 1: There exists only one minimum h* of F(h) in K (which
is then the unique, global, solution of (1)). The corresponding

pair h*, A* =A(h*) is a solution of the saddle point problem

inf sup ¢ (A,h) = sup inf ¢ (A,h), (13)
heK A A heK
where ¢ (A,h) := - < A,GA > + 2 < A,Z >, A critical point of F(h),

i.e. a solution of (11) and (7), is a solution of (1) if and only
if the corresponding A* lies in

(n-2)d

B:={A€ER : T. := (a. -a.,Ej) >0, 1<j<n-1}. (18)

J =1=1 =3

2. Descent Methods. In the following we describe how some descent
methods for constrained minimization problems may be adapted and
modified to problem (9) so as to guarantee global convergence. A
general method for minimization with linear equality constraints has
the form:

for the solution h* € Rn-] , one

E(v-l) for h* by

Given the approximation h(v)

computes an (improved) approximation

v)

E(\’"’l) im E(V) + va_(.i. s v=0,1,..., (15)

v) is the direction of search (| Igvll = 1), the positive ’

O o

where d
scalar Gv the step length, and P the linear projection of d
ker R, where the constraints are given in the form Rh = b with

matrix R. In the case of problem (9) a simple choice is to set

n-1
(Pd). :mgq, - 1 L d; (16)
] I (n-1) ja
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for the vector d = (d],...,d ).

n-!

In order that the above method is a descent method we assume
that there is a number B > 0, independent of v = 0,1,2,..., such

that (note that P = PT with the choice (16))

(5("),Pg(")) <- slp g™, (17)

) (v)

where g denotes the gradient of F at h

o) ([, ()
g := grad F\h /.

, 1.e.

(Note that here (,) stands for the scalar product in Rn-].) Then

Taylor expansion gives the decrease of F(E(V+l)

) for év sufficiently
small. The following step-length procedure realizes this.
Choose Gv = 2-3, where j = j(v) is the smallest non-negative

number such that
AN QOIS T € A WA ) R WIS T3 B A Q) RS CORY
F\E +2 -4 / F\h }"‘2 \_g_ ,Pd / (18a)

§v+1) <
i
€K can also be incorporated. To this end we require

additionally that 6\) = 273 shall satisfy

is valid. In this procedure the constraints O<h
(v+1)

1, 1<i<n-1,

implied by h

-hi(") < 2'5(Pg("))i <1- hg\’), 1<i<n-1. (18b)

Both (18a) and (18b) are always satisfied for 6\) =27) sufficiently
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small. This is guaranteed by the fact that for any h€K the inequality 13

min h, 2 win ||y
j i

2 2
ie1 "4l /[(n-l)m§xllzj+]-yjll +F(h)] (19)
holds (see [4]).
The above considerations only ensure convergence to a critical
point. In order to improve this we introduce so called "T steps"

for h(") €K such that not all corresponding Ti's defind by (12a)

are positive. In this casg_»g_gtitﬁi_?cal__goint }_f" of F(h) cannot be the
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solution of (1) according to (14). Suppose it is not a strict local

minimum too. Then

n® min (Pg , H(E*)Pg} <0 (20)
il 1=

must hold,where H(h) denotes the Hessian of F(h) at a point h. If d*
is a direction attaining n in (20),the decrease of F(h) along d*

satisfies, for 0<§ < 60 s

k
F(h* + 6Pd*) < F(b%) + max (~C6 °, né %) 21)

with some constant C >0 and a natural number ko' This can be seen

from Taylor expansion about h*.

(v)

Therefore we define a "T-step” as follows: for an estimate h

compute a direction '&‘(v) for which

n(\)) S(PE(V) . H(_tl(v)) PE(V)) = min /P_d_, H(_[l(v))Pg_}' (22)
fidi =1
-£

The step length '5‘“ for this direction is chosen as & = 2 © and 1’.0 by
0270y wain o2 : 0 < F™ +-6de(‘Y))}. (18¢)

Here each j has to satisfy (18b), and @(t) is defined by

~I
p(t) := F(P_(V) + th‘v)). We remark that (18c¢) can be satisfied
only if some T, are non~positive. Therefore we combine the '"T-steps"

with the "normal steps" to obtain the following algorithm:
g

(v)

Given an estimate h for the solution h, compute

(i) the vector A(V) = _é(_tl(v)) from (7) with G-G(h(v)), Z=Z(D_(V)),,

v) V)

ii) a direction of search d and its projection Pd according

to (16) such that (17) is satisfied, and a step length o,
according to (18a), (18b),

(v+1)

(iii) the new estimate h via formula (15), if all '1‘i formed in |

(v)

(12a) with respect to A are positive, otherwise
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iv) a direction of search g(v) according to (22), and the test
(18&),
v) the new estimate E(Wl) by setting _tl(vﬂ) = E(v) + 'E\E(v)

. . .. . . v+ . ..
1f the test 1s positive, otherwise define E( D as 1n 1iii).

We can now prove

Theorem 2: The above algorithm converges under the assumotion (18)
for any starting vector E(o) €K to a strict local minimum of problem
9).

Proof By (19) all the iterates E(\’)

lie in a compact subset of K.
. . n .
Hence there 1s a subsequence converging to some E* € [0,1] which

we denote by {E(Jv) }:=l'

Following standard lines (cf. [2])it can be established that h*
is a critical point of F(h). But we have still to show that h* is a

strict local minimum of (9). To this end we choose for € > O suitable

v = v (e) so large that for all e2v
o o o

Y -priise, w9y —w@om sy @, vy,
where |ll -lll denotes the matrix norm on Rn_l and Y](E) is a constant
tending to zero for € +0. Then we can find Yz(e) with Y2(e)+0 for

€+ 0 such that, for vzvo ,

F(h(Jv) + 6 pg(Jv)) < F(h** 5pgﬂ> +v,(e), (23)
where d* is defined via (20). This is a consequence of the fact that
n and d* depend continously on h* .

We assume then that h* is not a strict local minimum of (9), i.e.

(20) holds. Then it follows from (23) and (21) (for 'Ejvsso) that

. . ~-£k .
o™h 'F(E(Jv) + Z_ZE(J v)) SF(h¥%) +max(-02 °,n4_£> + v, ()
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| (3v) () (e o 4k
L - < Flh + g. Pd + maxy -C2 S,N& + .
(n g A )t ®
T .t -
. This means that in (18c) a finite step length ojv=2 $60/2 will -
- be chosen provided ¢ - and hence vo=vo(s) - are chosen such that ~ g
. yz(s) €(1/2)min(C,~n). Then we obtain a contradiction since Ko is such: “‘:
.—f that / (Gv)+1 \ -£ ‘ -;;‘
E F{a0V ) e ?) 5@y + (/2)maxt-e, ). >
_2 - , 4z ®
- j | 4
1‘5 | As an application of this theorem we state i ‘32
16  Corollary: The above algorithm converges to a strict local minimum 5 jc
T4 if one takes as direction of search g(") the direction of the pro- ;j
22 jected gradient Pg(v). ag o
20 <
2 3. Further methods. The proposed modification of the projected :
"j gradient method is not yet practical, since a"T step" requires too B
- -
Z= much work. This is due to the fact that the Hessian of F(h) is given 29 e
26 e e - 2
S5 only implicitly, namely by (cf.[4]) b
28 26
29 2 25
3 F 3 A 9A -3 by
30 =
i sh.ah, - < am, * Cam, ot %3 Ty o 24 °
i1 i3 i b 2z
23 where the vectors {3A/3hi}:.:: have to be determined by the systems 51
>4 ' 20
2 .19
: = L) - G . 1
2 G(3§_/ahi) (ag/ahl) (a_lahl)é. (24) I(j °
5 16
. Thus the amount of work of a "T step" is n-times larger than that 15
;l of a usual one if one assumes that the essential work is solving the ]1“;
43 (n-2) x (n-2) tridiagonal systems (with always the same matrix G). 12 °
4; Namely,a '"'normal'step requires the solution of d such systems " ié
. . }
22 I (see (5), (9) for the evaluation F(h))whereas a "T step" needs g
47 {n~1)d additional solutions. -
33 In the actual computation we used a simplified version of a L6 °
50 "T step' based on the use of directions E(D defined via : 2
51 b3
52 2
53 1
- - ®
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the above algorithm:

0 {TiI-E
L 0 otherwise,
and the following definition of‘a(v) in
E(V) = T E(Z), I(v)
2e1t™ Téfz o

()

where the T
‘The reason for the restriction £€1

expansion (hﬂ §h§v)),

F(_tl(")+c'§("))mp(_11(")) +6 ¥

the negative part with the Tév),

(v)

is

[ o
OLE
~(v)
Te-1

}s

are defined via (12a3) with respect to é‘v)! é(h(v)).

that in the first order

v) (v) +2

(v) (v)
%) -2T

Tp z £-1%-1

should dominate.

We used direction (25) combined with the step length procedure

(18b), (18c) in the above algorithm successfully despite the fact

that we could not prove that it is a direction of descent near a

"eritical point other than the solution of (1). Our experience was

1

)

:={£€{2,...,n-1}: Tév) <0, (25)

EL O o

28

-~ -

26

25

24

-~

~ A

that it usually produced a larger decrease of F(h) than the (projected) <

d1rect1on of steepest descent. The effectivness of this technique is

highlighted by the fact that only with its help the solution of (1)

could be found in presence of another critical point (see example 2

2

<&

V
20

19
1o

below). Here one should remark that this statement is not quite precise 16
‘L_)

in that even Theorem 2 only guarantees convergence to a strict local

minimum of F(h). However it is very likely (with homotypy arguments)

. that there is only one such minimum, namely the global one.

Another idea is to use Newton's method. We omit the details since

each iteration would require the solution of (n-1)d tridiagonal

. systems for the computation of the Hessian (cf. (24)). Instead we

'used a less expensive variant based on a different parametrization of

- F(h) which will be described shortly. Introducing
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we obtain after some computation,instead of (8),the representation

‘ 2 [ 2, -3 1
JUis"(e) 1| de=12) E v [I"h;"-< S,R >+< 5,1 >;2¥ (0,5), (26
o i=1 - -

47
h R := ( ) i . b +4
where R := (r,,...,r ) is given by 1a
( 42
-2 41
| LA » 1= 10
| + 39
r. := W, h—.‘z . h—.2 » 2<£j<n-] BRe
=] =3 ] -1 -l =
-2 . TR

Ya-1 Pa-i » i=nm i
' .
and T = (I‘ij) denotes the symmetric n xn matrix :
/ N

! -1 >

/ -~
2hl . hl. 29

L 23

1 h, e T <
Fi=3 = . 27y -5
1 owlantly 7! 25

\ ) B T O M =4
\ bl ! =2
\ g n-1 2l
20
i)
Since any cubic spline function with g(ti), g'(ti) prescribed for "2
1 £i £ n is feasible in the infimum of (1), this problem is -7
16
equivalent to : {5
14
. 13
inf ¥h,S).

hek, s €R™ 12
' The equations for a critical point h€K,S of ¥(h,S) read ! lg
R
Y 36 2 24 Lz

0 “"ahj = hl;”Ej“ +F(Ej’-s-j+l+ij) - .
j j (28) .

4

4 [ 2 2 ]

\ - —iMs, 11%+1ls, 117+ (s.,s.. ) 3
w2l =i =j+l =j’=j+17]° 5
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n—1

1= Z h., (28b)
i=1
¥

0=¥=—12§+24F§, (28c) {

with Lagrangian parameter k. The notation 3¥/3S stands for the
gradient with respect to the variables in S. It is well known
([1, chapter 4]) that (28c) is a defining system for the natural

.. . . . d .
cubic interpolating spline curve in R . Hence the solutions of

equations (8), (11) in h, A are same as those in (28).

In order to compute the Jacobian of (28) the n xd unknowns of |

these n xd equations are ordered as |

e PN €] ) n
h .sh h := ) ,§£. (si seeesS JER,

n_]’ n' l-l;_s_= (§]9°"’s

],.- _d

The associated n xd mappings are (E denotes now the old h enlarged by
hn )

o= <3 < n—
@, (h,S) := h + 3¥/dh,, 1<isna-l,
n-1
wn(hss) = Z hi -1, 1 =n, (29)
i=]
(¥ 1 (‘e) <' < < <
¢i,£(h"s—). 3‘!’/38i ’ ]—1—n, I_K_d.

The Jacobian J of this mapping on Rnd into Rnd then has the block form

B P |

' . n 1 |

I' ' . l i

3= R S P _
- el n-1 1
}P 1 -==1 0

where the numbers nJ. are given by

o e = b = e = RN RO NN NN WWWWIWWWWWWeSE LML LD LSOOIV o
HFNWAEUIAJOOVOFNWLEBUIANOOVOHNWEBITAYJOWOHNWEUAIDOLWOHFHNDNWOO
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2.-5 3[ 2
n l&bllgjll hj 72(w. ,sJ+sJ+]) 8h IIs Il +|I§j+l|| +
+ (s.,s. ).l . (30)
~=j’=j+1’ |
The only nonzero entries of the matrices BZ are

(Z) = 24w (IL) 8&0 (0 —2 , 1<i<n-1,

11 1+I i
OO I YRR Lo Mt R o Mar N o M 1<i<n-1,

1,1+ = i i 1+l b i 1

and the matrix T is defined by (27). With the knowledge of J the
Newton method for solving the system (30) can be set up in the
standard manner. We omit the details due to the lack of space. We
only mention that by using the block structure of J the solution of

the linear equations with matrix J can be reduced to the solution of

d -
| d systems with matrix I and one system with matrix E- ¥ B r lBT

v=1
In the actual computation we simplified J by setting the matrices
T T
{2 e esBy
requires the solution of d systems with I and one system with E.

B equal to zero. Then the solution of the resulting system
Thus the amount of work for computing a new direction of search is
| comparable to that of the projected gradient method above. We then

formed a descent method with this direction of search and step length

. procedure as above together with '"T steps" in the version of (25). We

: could not prove global convergence of this Quasi-Newton method. But

| we have at least local convergence in view of the relation

; . -3 =3[ 2 2
n; 12Tjhj + Shj LII_s_J.II + Ilgj”ll + (s »S. +l)]

b
J0 O D -t

which follows from (30) and (12a). Specifically in view of (14), all
these numbers are strictly positive near the solution and hence E has

a bounded inverse.

4. Numerical results. Many examples were computed in order to

|
|
|
|
i
i
]

Ui
[(SEWN =]

wu
—

[ = S )]
&N DO O

RN W LW wWwWwwwwd bbb
VO HHNWLULAJOWO N W

N
@

NN
[e XN

2
(52}

3

NN
N W b

)]
—

e ol a8
WHhuUudh-JoowWwOo

s 2D

-

[



| U I SRR

[N

b b -
o Y e T

e de S ode -
[N REG SN B SURW ) N PN

PR S,

e
SORE S

N

oY

compare the behaviour of the projected gradient method (PG) with

that of the Quasi-Newton method (QN). As starting points for the
algorithms we chose either the uniform parametrization (U) with
knots hi = 1/(n-1) or the normalized accumulated chord length para-
metrization (CL).

It was observed that for the PG method a start with CL parametri-
zation often took fewer iterations for convergence, whereas for the
QN method this happened for the U parametrization. Concerning the
dependence of the data it turned out that for "smooth" data (cf. the
data in S-form in [3]) the QN method often needed more iterations
than the PG method but even fewer function evaluatious (which
correspond to the number of solutions of tridiagonal systems). For
data with isolated corners or peaks the QN method seems to be
generally superior. The following table illustrates this (# It

denote the number of iterations, # F the number of function evalua-

tions, the tolerance for the error was chosen as lo—a):
CL u
[ 1}
QN ._%.FE l-—--:SL o #<£t ' 114
method | P A
#F ' 130 #F . 674 Example 2
! I
PC ._#_Fi.l ..E?E._-_--_ #‘is_t_‘_ _éié_
method 14w ! 213 #E | 4681

The following two examples (figures I, 2 and 3) are chosen to
illustrate the qualitative behaviour of the different parametric
spline interpolants. The curved marked by ... uses the uniform,
- .. - the CL and - the "optimal" parametrization. The small circles
mark the data points (in figures 1 and 2 the four lower corner points?
are nearly identical).

The first example is particularly interesting since it exhibits
the existence of a critical (or stationary) point other than the
global minimum. The PG method without "T steps" terminated at a

point with Ti's alternating in s@gn (figure 2) and at a point with

e pusmman
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FIGURE 1 THE MINIMUM

FIGURE 3
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FIGURE 2 A STATIONARY POINT o
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®
Table 1| °
Data of Figure | and Figure 2
i y;
1 (-1.0 , 0.0)
2 (-1.5 , 0.0) o
3 (-2.0 , 0.0)
4 (-4.999 , 0.0)
5 (-5.0 , 0.001)
6 (-5.0 , 0.999) ®
7 (-4.999 , 1.0)
8 (-0.501 , 1.0)
9 (-0.5 , 1.001)
10 (-0.5 , 3.5) . @
11 (-0.5 , 6.0) ‘;'
12 (0.0, 6.0) o
o
S —— ditionde
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1 positive T, if "T steps" were used (figure 1). According to (14) o

only the latter point is the global minimum.

The second example (figure 3) illustrates very clearly the

PrE———

influence of the parametrization on the resulting spline inter-

polant. The data points Yys-- and EEETERRED /2 follow closely ®

Y32
each other so that the curve is well described by them. Consequently
the parametrization has nearly no effect; all three curves are

.- essentially identical. However, between Y39 and Y33 there is a large

; gap in the data which provide therefore only poor information. Here T ®
Y EEY
B the use of sound parametrization turns out to be essential. 19
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DATA FITTING BY PENALIZED LEAST SQUARES
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Abstract: In this paper we deal with the problem of approximating an unknown
smooth function, given a set of data consisting of measurements on the function. We
are especially interested in the case where the number of data is fairly large, and is
subject to considerable noise. We focus on a method for solving this problem, called
the method of penalized least squares, which, for some reason, does not seem to
have received much attention in the Approximation Theory literature, despite the
fact that it often seems to work much better than several other more commonly used
methods. Our aim is to give a complete and self-contained treatment of penalized
least squares, including a discussion of how to choose the smoothing parameter.

Key words: Data fitting, smoothing, least squares, penalized least squares

1. Introduction

Suppose f is an unknown function of one or more variables, and that we are
given a set of measurements

zZi=Mf4+e, 1=1,...,n, (1)
where A;,..., A, are linear functionals defined on some linear space F containing
f, and where ¢,,...,¢, are measurement errors. Typically the A; will be point-

evaluation of the function or one of its derivatives, although other functionals are
also of interest.

Our aim is to approximate f using a finite dimensional subspace S of F spanned
by functions B,,..., Bs, where k < n. For each ¢ :=(c;,..., )7, let

k

8¢ = ZC.’B.’. (2)

=1



The problem is to devise some reasonable means of choosing the coefficients. Per-
haps the best-known approach is the classical method of least-squares whereby we
minimize
1 n
E,(c) = ;Z[/\.‘Sc - z)? (3)

=1

over all choices of c.

While straightforward least-squares fitting is often appropriate, for some data
fitting problems it produces a function which is not sufficiently smooth (for an
example, see [11]). In such cases, it may be better to look for a function in S which
minimizes a combination of the goodness of fit (3) with an appropriate measure of
smoothness of the fitting function.

Many reasonable measures of smoothness of the function s, can be expressed
in the form

J(c) = cTEc, (4)

where F is a symmetric nonnegative-definite k X k matrix. For typical examples in
univariate and bivariate data fitting, see Section 5 and Remark 5, respectively.
Suppose now that A > 0 is given and that E # 0. Then for each c € R*, let

pa(c) = AcTEc + % zn:[/\.'sc ~ z]% (5)

=1

The second term in (5) is just the mean square error in approximating the data by
8c. The first term can be thought of as a penalty term which, with the appropriate
choice of E, measures the smoothness of s.. The parameter A can be regarded as
a smoothing parameter.

Definition 1. The penalized least-squares fit of the function f based on data z is
the function sy,; := s¢(x) corresponding to the choice of ¢(A) which minimizes the
functional py(c) defined in (5).

While the use of such penalty terms seems to be well established practice in
statistical data fitting as well as in regularization of ill-posed problems, the method
seems to have received much less attention in Approximation Theory circles. For
more on the history of penalized least squares methods, see Remark 1 in Section 6
below.

The remainder of this paper is organized as follows. In the following section we
establish the existence and uniqueness of solutions to the penalized least squares
problem, and also discuss the special cases when A = 0 and when )\ approaches
0o. In Section 3 we discuss the connection between the choice of the smoothing
parameter A and the goodness of fit. Section 4 is devoted to an automatic procedure
for selecting the smoothing parameter A called generalized cross validation. In
Section 5 we give details of how penalized least squares can be applied to fit data
in the univariate case using splines. The last section is devoted to remarks.




——

e

2. Existence and uniqueness

Throughout the remainder of this paper we assume that the linear functionals
A1,.-.,An and basis functions B,,..., By are such that for some 1 < 1) < --- <

vy <n,
det (A, B;)f j=1 # 0. (6)

Under this basic hypothesis, we can now establish the following existence and
uniqueness theorem for penalized least-squares fitting.

Theorem 2. For any A > 0, there exists a unique vector ¢(\) minimizing the
functional px(c) in (5). In particular, c¢(A) is the unique solution of the system

(BTB + nAE)c(\) = BT, (7)
where z = (z,... ,22)T and B is the n x k matrix with entries
Bij=X\Bj, i=1,...,n; j=1,... k.

Proof: Setting the gradient of the function p)(c) equal to 0 leads immediately
to the system of equations (7). The basic hypothesis (6) assures that the matrix
G := BT B is symmetric, positive definite, and nonsingular. Since E is assumed to
be symmetric nonnegative-definite, we conclude that for every A > 0, G + nA\E is
also symmetric positive definite. B

As in the case of the classical smoothing splines, clearly the size of the smooth-
ing parameter A has a major impact on how well the function s, ; fits the function
f which generated the data. In Sections 3 and 4 below we shall discuss how to
select A effectively. In the remainder of this section we discuss the nature of the fit
in the extreme cases when A = 0 and when A approaches oco.

When A = 0, it is clear that the functional py(c) is just the mean square error
when fitting the data using functions of the form (2). Hence this case corresponds
to classical least-squares fitting using the space § = span {B;}¥, and the system
(7) is just the usual set of normal equations. If k¥ = n, then the least-squares fit is
simply the function in § which interpolates the data.

The situation as A approaches co is somewhat more complicated. First we
prove a lemma concerning the behavior of the inverse of the matrix G + n)\E,

where G = BTB.

Lemma 3. For all A > 0, the entries of (G + nAE)™! are uniformly bounded by
1/a, where a is the smallest eigenvalue of G.

Proof: Let z be the r** column of (G + nAE)~!. Then (G + nAE)z = e,, where
e, is the vector in R* with all zero entries except for the r**. It follows that
zT(G + nAE)z = zTe, = z,. Now by the nonnegative definiteness of E, we con-
clude that zT7Gz < z,. On the other hand, by the positive definiteness of G, the

smallest eigenvalue a of G satisfies

T
0<a=minyfy.
y#0 y'y




It follows that azTz < z7Gz < z,, and thus az? <z, forall j=1,...,k This
inequality asserts in particular that 0 < z, < 1/a, and it immediately follows
that |zj| < 1/a, for all j = 1,...,k. Since r was an arbitrary integer satisfying
1 < r < k, this completes the proof. B

We can now examine the behavior as A — oo of the coefficient vector c(A)
which minimizes the functional px(c) in (5).

Lemma 4. There exists a vector ¢(oo) in R* such that

All’rr(:o c(A) = ¢(o0).

Moreover, Ec(oo) = 0.

Proof: Clearly, ¢(\) = (G +nAE)"'BTz. Since the entries of (G + nAE)~! are
rational functionals of A and are uniformly bounded for all A > 0, it follows that
(G +nAE)™! converges to some matrix L as A — oo. But then ¢(\) approaches
LBTz as A — oco. Finally, since

G BT:
(;X + E) ) = ni’

it follows that Ec(occ) =0. B

Theorem 3. The function s, () is the least-squares fit of the data from the fol-
lowing subspace of S:

k
Sg = {Z ¢iBi : Ec= 0}. (8)

=1

Proof: Since
Ge()\) + nAEc()\) = BT 2,

and the first term converges as A — oo, we conclude that nAEc(\) converges to
u:= BTz — G¢(oo). The matrices E and (E, u) have the same rank, and it follows
that u = Ez for some element Ez with z in RF. Thus we have

£ [ %]

But this is precisely the system of equations which uniquely determines the least-
squares fit of the data from the subspace Sg. B



3. Properties of the fit

In this section we discuss the behavior of the fit as we vary the smoothing
parameter A. Given measurements as in (1), let sy . be the penalized least-squares
fit of f constructed from the noisy data vector z. Then the mean-square error using
this fit is given by

1 n
T.(0) = = 3 _[ilsr: = O, (9)
i=1

We begin by considering the case where we have exact measurements; i.e.,

where the errors €,...,€6, in (1) are all zero. In this case we want to consider
Te()), where f = (\;f,..., A )T

Theorem 6. The function Tr()) is monotone increasing for A > 0 with Te(0) =0
and limy ..o T¢(A) = 0.

Proof: First we establish the monotonicity of T¢(A). For exact measurements
z = f, the minimum of the expression py in (5) is attained at c¢(A), and is given by

pa(ce(X)) = Aee(A)T Ece(X) + Te(N).
Similarly, for all I>A>0,
p3(ce(N)) = Aee(M)T Ece(R) + Te(N).

For ease of notation, we now define a = ce(M)TEce()), & = ce(MTEce(N), 8 =
T¢()), and B = T¢(A). Then the minimality of c(A) and c¢(A), respectively, imply
that

da+pf<ra+B and Xa+f8<Aa+B.

It follows that
da+la<Aa+ia and Aa-—a)<Aa - a),

and thus that & < a. Since A(a—a) < B — B, we conclude that B > B which asserts
that T¢()\) is monotone increasing.

To establish the assertions about the derivative of T¢()), we need an explict
formula for it. To this end we introduce the n x n influence matrix

A()) = B(G + nAE)™'BT. (10)

By the properties of the matrices appearing in (10), it follows immediately that
A()) is symmetric positive definite. In addition, we claim that A()) provides the
connection between the data vector z, and the associated values of the penalized
least squares fit; i.e.,
Alsxﬂ
= A()N)z. (11)

An3ka

hw



Indeed, (A\18a,z,.--»Anda,z)T = Be(A) = B(G + nAE) BTz = A())z.

Now it is clear that
Te(A) = %[A(A)f — f]T[ANE - f].

From this we compute that
n[Te(A) — Te(0)] = £T{AN)T A(X) — 24(2) — A(0)T A(0) + 2A4(0)]E.

Using (10), we arrrive at the formula

Te(X) = Te(0) + nA2ee(M)TEG ™ Ece()). (12)

Forming the difference quotient of T¢(A) at 0 and using the continuity of cf()),
(as shown in the proof of Lemma 4), it immediately follows that the derivative at
A = 0 is zero as asserted. The assertion about the derivative as A — oo follows
from the boundedness of Tg(A). W

It is now clear that to minimize the error in the approximation when fitting
exact data, we should choose the value of the smoothing parameter ) to be zero.
We should note, however, that for a certain class of functions Fr which we are
about to define, T¢()) is constant, and hence all values of A are equally as good.

The class is
Fe={f : d(f,8)=d(f,Se)}, (13)
where n
d(£,S) = inf =3~ [nls = NP, (14)
i=1

and d(f,Sg) is defined similarly. Indeed, in this case, T¢(\) has the same value for
both A = 0 and for A = co. Thus, since T¢(\) is monotone increasing, it must be a
constant.

In practice we almost always have noisy measurements, and as we shall see
shortly, in this case it will be more advantageous to take A\ > 0. To analyze the
noisy case, we need to make some basic assumption about the nature of the noise.
Throughout the remainder of this section we suppose that the errors ¢,,...,¢, in
the measurements (1) are independent, identically distributed random variables
with mean 0 and variance o2.

It is easy to see that

nT.(A) = nTe(A) + 2eT AN T[4V — f] + eTA(A)TA()\)e.
Taking the expected value of this expression gives
a’trace (A%2()))
- .

ET, () = Te(\) + (15)

Before analyzing this expression further, we need some information on the
trace of the influence matrix A(A). Let 0 < k; < k2 < --- < &ki be the eigenvalues
of G™'E, and suppose that {v,...,vs} are the corresponding eigenvectors. We
suppose that x; = -+ = K4 = 0 < k441. This is equivalent to assuming that the
dimension of the space Sg defined in (8) is d.




Lemma 7. For 0 < )\ < oo the matrix A()) has exactly k non-zero eigenvalues

1

=—1+nA}cj, ]=1,...,k.

Hj
For \ = oo, the eigenvalues of A()) consist of 0 with multiplicity n — d and 1 with
multiplicity d.

Proof: We first consider the case where 0 < A < oo. Since for all z, the vector
A())z lies in a k-dimensional subspace of R", the first n — k eigenvalues of A are
all 0. Suppose now that A = 0, and fix 1 < j < k. Since the least squares fit of the
function Bj is Bj itself, it follows that (A1 Bj,...,AnB;)T is an eigenvector of A(0)
corresponding to eigenvalue 1. This proves that the k nonzero eigenvalues of A(0)

are all 1.

We now treat the case where 0 < A < 0o. Suppose v € RF is an eigenvector

of G™'E corresponding to k > 0; i.e., GT'Ev = xv. Let u = {5y and suppose

u € R" is such that G™1BTu = v. Let w = Au. Since B is of rank k,
Au=0 if BTu=0. (16)

The fact that v # 0 coupled with (16) assures that w # 0. Now it is easy to see
that the following equalities are equivalent:

kv = G~ 'Ev.

Gv = uGv + nduEv
Gv = (G + nAE)W
(G+nAE) 'BTu = puG~'BTu
G(G + nAE)'BTy = uBTu
BT(Au — pu)=0
A(Au — pu) =0
Aw = pw.

This establishes that u is an eigenvector of A. To complete the proof we have to
consider the possibility that  is an eigenvalue of G~! E of multiplicity m. Suppose
v1,...,Um are linear independent eigenvectors of G~!E associated with x. For
eachi = 1,...,m, let u; € R™ be such that G-'BTu; = v;, and let w; = Au,.
Now we claim that the w; are linearly independent eigenvectors of A. Indeed, if
aywy + -+ apmwm = 0, then ayAuy + -+ + apmAu, = 0, and by (16), it follows
that ;G 1BTu1+- -+ amG~'BTuy, = o191+ - -+ amvm = 0. But by the linear
independence of the v’s, this implies a; = --- = am = 0, and we have established
the asserted linear independence of the w;’s.




It remains to deal with the case A = oco. In this case, we are performing least
squares in Sg, and hence s, lies in a d dimensional subspace of R". It follows that
n — d of the eigenvalues of A(c0) must be zero. On the other hand, since each of
the d basis functions of Sg is approximated exactly, just as in the case A = 0 we
see that 1 is an eigenvalue of A(oo) of multiplicity d. W

For later use, we note that since the trace of a matrix is equal to the sum of
its eigenvalues, for 0 < A < oo,

k

1
he— A = ———
t(A) := trace A(A) ,E=1 (1 n n/\fcg)’ (17)
and, since the eigenvalues of A%(\) are the squares of the eigenvalues of A(}),
k 1 2
A):i=t A2\ = E .
t2(A) race A°()) i=l(1+n’\"7i) (18)

In particular, t(0) = t3(0) = k. We also note that t(co) = t2(o0) =

Theorem 8. The function ¢()) := ET,()) has the value £T,(0) = T¢(0) + ko?/n,
and asymptotically approaches the value T¢(o0) + do? /n as A — oo. Its derivative
at A = 0 is negative. Moreover, for all A > 0,

2
ET,(\) - ET,(0) > %[tg(,\) — 1,(0)], (19)

where t2()) is defined in (18).

Proof: Putting ¢3(0) = k and t3(c0) = d in (15), we immediately obtain the
asserted values of ¢ at A =0 and A = oo. By (15),

g tz(/\)

$() = () + —== (20)

Now since
. nK;
t2(A) = E (1 + nlk;)3

and T¢(0) = 0 by Theorem 6, we immediately deduce that #(0) < 0 as asserted.
Finally, to prove (19), we note that by (12) and (15),

2 -
ET.(A) - ET.(0) = nX’ce(\)TEG™'Ece()) + 7 [tZ(/\)n tZ(O)].
Since the first term on the right is nonnegative, the result follows.

It is clear from (20) that in the case where f € Fg, the function £T,()) is
monotone decreasing since, as observed earlier, T¢()) is constant in this case while
t2(A) < 0.
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4. Choosing the smoothing parameter A

¢

; In the previous section, we have examined the connection between the choice

) of the smoothing parameter and the size of the true error or expected value of the
true error. We can summarize our observations as follows: °®

Case 1: (The noise is zero) In this case, in order to minimize the true error of fit,
we should take A = 0; i.e., we should perform least squares using the space S.

Case 2. (Noisy data) In this case it is reasonable to choose A to minimize the
expected value £T;()\) of the true error. There are two subcases. If £T;(A) is °
monotone decreasing on [0, 20), then we should take A = co. On the other hand,
if £T:()) is not monotone decreasing on [0, c0), then since by Theorem 8, £T:(})
has a negative derivative at A = 0, there is at least one value of A in (0, 00) which
minimizes ET;()). Let AT be the smallest choice of A which provides a minimum.

In the remainder of this section we restrict our attention to the case of noisy o
data. Our immediate aim is to discuss an automatic method, called generalized
cross validation, for computing a reasonable estimate for AI. Given a data vector z
as in (1), let s ; be the associated penalized least-squares fit, and let A()) be the
influence matrix defined in (10). Then we define the associated generalized cross

validation function as E.()) °
i ey e
where .
E.(A) = %Z(/\isk,z - zi)zy (22) Py

i=1
and #()) is the trace of A()) as given in (17).

Lemma 9. The function E,()) is monotone increasing for A > 0 with E.(0)=0
and limy—oo E:(A) = 0.

Proof: The proof of this lemma is virtually the same as the proof of Theorem 6,
and we omit the details. W

Lemma 9 does not assert that E;(\) is strictly monotone increasing. For some
z it can happen that E.()) is constant for all 0 < A < 0co. We now show that V() L
has properties very similar to those of €T ().

Theorem 10. The function V() has value E,(0)/[1 — k/n)? at 0 and asymptot-
ically approaches the value E,()/[1 — d/n]? as A — co. Moreover, V(\) has a
negative derivative at A = 0.

]
Proof: The first assertions follow immediately from the properties of t(A). To
prove the last assertion, we note that
V() = n?(n — t(A)E:(A) + 2n2E,(V)i(N)
[n ~ tOF | xS

A ————————— . |



The assertions now follow from the properties of E,()) and the fact that

i) = Zufﬁmz

Theorem 10 implies that either V() is monotone decreasing on [0, c0) in which
case we can think of its minimum as occuring at AY := oo, or there is at least one
value of ) in (0,00) where E, has an absolute minimum, in which case we define
AY to be the smallest choice of A which works.

The process of computing the quantity A} as an approximation to AT is called
the method of generalized cross validation. To implement it numerically, we have
to find the minimum of the validation function V()). The standard approach
to doing this is to compute V() at several choices of A, and then use a search
procedure. For each choice of A, the bulk of the computational effort typically goes
into finding #(\) = trace A()). In those cases where the matrix B has a band
structure (as happens for example when using univariate splines — see Section 5
below), the trace can be computed efficiently using the LU decomposition of the
matrix (G + nAE), see [13,21]. In the general case it may be more efficient to resort
to finding the singular value decomposition of (G + nAE), which then leads to an
explicit expression for ¢()), see [2].

From a theoretical standpoint, it is of interest to consider the expected value
of the validation function V. Since

EE.(N) = () + Zts(),

where

t3(\) = trace (4 — I)?,

we obtain \
ta())
Te(\) + —=

EV()) = 1=

The following theorem, whose proof is straightforward, shows that £V () has prop-
erties very similar to those of both £T;(A) and V().

Theorem 11. The function £V () has the value ﬂ:f—{; at 0, and asymptotically

1
approaches the value [—71:'_(1”% as A — oo. Its derivative at A = 0 is negative.

Theorem 11 shows that either the function £V (1) is monotone decreasing for
all A\, or there is some value of 0 < A < oo where it has a minimum. We denote
the first such point by AZV ., In practice, we cannot compute this value because we
have no way of computing either T¢(A) or o. (Indeed, if we could compute these
quantities, we could find the minimum of £T,()) directly). We have the following
interesting theorem concerning AZY



Theorem 12. The quantity A\EY is an asymptotically optimal estimate of the best
smoothing parameter \I in the sense that

ET.(AEY)
D A, S S
1< Zr.00

-1 (23)

asn — oo.

Proof: As in [23], it is easy to show that for A > 0,
EV T

S TLOD) = T-A08) (24)

where

t(A)? — 2nt()) + nt(A)?/ta(N)
[n = t(N)? ’

and where ¢(\) and t2()\) are defined in (17) and (18), respectively. Now since

d < t()\) < k and d < t3(A) £ k, 1t follows that the quotient in (24) converges to
zero at arate O(1)asn —oc0. W

An(A) =

For smoothing splines, the only known way of producing sequences A, which
are asymptotically optimal is via generalized cross validation. The following result
shows, however, that for penalized least squares fitting, the situation is different.
Here there is a range of values of A\, which are asymptotically optimal.

Theorem 13. Suppose that for each n > 1, the quantity A, > 0 is such that
ET.(An) < ET:(0). Then
. ET:(An)
A e on )
Proof: By (19) and the fact that t2(0) — (1) < k — d, we have

ET.(M\n) £T.(0)
12 ET.0T) = ET.00) = (k = D)ot/

Clearly this expression converges to 1 at a rate of O(1). W

Theorem 13 asserts in particular that A, = 0 provides an asymptotically op-
timal sequence of smoothing parameters. In fact, since £T,()\) has a negative
derivative at A = 0, any sequence of "sufficiently small” numbers A, would work.

The fact that £T,(0) — (k — d)o?/n < ET.(A) < ET.(0) for all sufficiently
small ) suggests that for fairly large values of n, there is little to gain in terms of
goodness of fit by striving for the optimal value of }; it is enough to make sure
that ) is sufficiently small. On the other hand, for noisy data, in practice it is often
necessary to take A > 0 in order to get a smooth fit. Generalized cross validation
can be a useful automatic procedure for selecting a good value of ).




5. Penalized Least Squares Fitting of Curves Using Splines
In this section we show how the penalized least squares method can be applied
to fit a spline to the data
Aif =fti)+ei, 1=1,...,n,
where f € Cla, b}, and
a=t < ---<th=b

Let m,k > 0 be prescribed integers, and suppose that
Bi(z) = NI™(z), (26)

are the normalized B-splines of order m associated with an extended knot vector
1 < - < Yamtk, With ¥i < yigom for all i (cf. [20]). We may assume that the
knots have been chosen in such a way that o, < a and b < yx4,, and so that (6)
is satisfied. By the Schoenberg-Whitney Theorem (cf. Theorem 4.64 of [20]), (6)
will be satisfied provided we choose the knots so that there exist 1 < v, < --- <
vk—1 <n so that y; <t,, < yiym foralli=2,... ,k-1.

When using splines, a natural measure for the smoothness of a fit s would be

b
J(s) = / (D™ g(t))2dt. @)

In this case, if s is a spline of the form

k
s(z) = Z ciBi(z),

=1

then J(g) = cTEc with
b
Eij = / D™Bi(t)D™B,(t)dt, i,j=1,... k. (28)
a

We now discuss the problem of computing the quantities appearing in (28).
First we show how to represent the derivative of a B-spline in terms of lower order
ones.

Lemma 14. Let N!(z) be the normalized B-splines of order ¢ associated with the
knot sequence y; < --+ < yiy¢ With y; < yi4e (cf. [20]). Define hi, = yiss — yi.
Then for any q > 0,

q9
DN{(z) =Y _a!, Q4L (29)

v=0




[ ] =

?

where the Q’s are unnormalized B-splines on the same knots, and where the a! s
can be computed recursively as follows:

1. Set
Se 1, ,
A,,={-—-1, v
0, v
2. Dov=2togq

Dopu=v+2step —1to2
A= ( Ap - L=y )
# Rigu—2,041-v Rigu-3t41-v

3. Dov=0togq
as y = fac * Au+21
where fac = (£ — 1)(¢ — 2)--- (¢ — q). If any of the h’s is zero in step 2, the
corresponding term should be omitted.
Proof: This result follows easily from the basic formula (cf. Theorem 4.16 in [20])

(Ql—l( ) — Q.+1($)
ht,l

2
3
1,4,...944+2.

DQi(z) =(¢-1)

and the fact that N¥(z) = h, Q%(z). B
Theorem 15. For all i,j we have
Ei, = / D@ (DI (2)dz = 3 3 alta / Qr,(2)QR., (2)dz.
v=0 u=0
Proof: The result follows easily from Lemma 14. B

Theorem 15 can easily be converted into an algorithm for computing the entries

of the matrix E. Let
b k
- ( / QZ"(x)Q?‘(z)dz) . (30)
1]

=1

This is a 2m — 1 banded symmetric matrix which can be computed accurately and
efficiently using Gauss quadrature (see [4,20]). Then

Eij = a] P(i,})aj,

where P(i,j) is the (m+1)x(m+1) minor of P obtained by taking rows:,...,i+m
and columns j,...,j + m, and where a; = [a]%,...,al" ] for all i.

Penalized least squares using cubic splines with uniform knots has been used
in [11] to fit some medical data, and in [15] to fit some mechanical data.
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6. Remarks

Remark 1

The idea of minimizing a combination of goodness of fit and some measure
of smoothness is well-known in the approximation literature. Such expressions
arise, for example, in the Jefinition of smoothing splines (see [5,13-14,16-25,31])
and of thin plate splines (see (7-10,25,28-30]). In these methods the approximating
function turns out to be a linear combination of n basis functions (see Remark
3 below). The idea of working with a smaller number k of basis functions was
explicitly mentioned in Wahba [26-28], but seems to have been carried out explicitly
in only a few papers. In curve fitting case, cubic splines with equally spaced knots
were used in [11] to fit some medical data, and in {15] to fit some mechanical data.
Penalized least squares methods have also been used to fit surfaces to scattered
data using tensor-product splines (6] and finite elements defined on rectangles [1].

Remark 2

The method of penalized least squares as described here is closely related to the
method of ridge regression as studied by statisticians (see, for example, [12]). The
ridge regression problem is to minimize the expression px(c) in (5), with E replaced
by the identity matrix. It has been shown in [2] that the general penalized least
squares problem can be reduced to the ridge regression problem by appropriate
matrix manipulations.

Remark 3
Suppose a = t; < --- < t, = b as in Section 5. Then if we minimize

b n
3 [ @Pds + 23 ) - sl

over all functions with square integrable m-th derivative, we get the classical natural
smoothing spline (see [5,13-14,16-25,31]). The theory of smoothing splines can
be regarded as a special case of the penalized least squares method treated here.
Indeed, if we set k = n and take the natural B-splines (cf. [14,20]) as basis functions,
then the solution of the penalized least squares problem is precisely the smoothing
spline. Almost all of what we have done here is valid for the case where k = n with
the exception of the assertions about asymptotic optimality (see Remark 4).

Remark 4

The asymptotic assertion of Theorems 12 and 13 have been proved here only
for the case where k is fixed. However. it is not hard to see that the results are
also valid for a sequence k(n) with the property that k(n)/n — 0 as n — oo. The
situation when k(n)/n does not go to zero as n — oo is more delicate. For example,
to prove the analog of Theorem 12 for natural smoothing splines (see [22]) or for
complete smoothing splines (cf. [21]), it was necessary to give precise estimates on
the eigenvalues of E.



Remark 5

In Section 5 we showed how to use univariate splines to fit noisy data in one
dimension by penalized least squares. Clearly, the method can also be used to fit
surfaces to noisy data. For example, suppose f is defined on some subset Q C IR2.
Then we may measure the smoothness of possible fits g of f by

J(9) =(9,9)m, (31)

where, in general,

89)m= 3 [ DDso(z,1)DL DYz, v) dod. (32)

vt+pu=m
In this case, if s is as in (2), then J(s) = ¢T Ec with

Penalized least squares of surfaces can be performed using a variety of bases includ-
ing tensor product splines (cf. [6]), radial basis functions {cf. [2€]), finite elements
(cf. [1]), or multivariate splines on triangulations.

The energy expression (31) arises in the definition of thin plate splines (see [7-
10,25,28-30] and references therein). Thin plate splines can be regarded as arising
from penalized least squares using k = n and appropriate basis functions.

Remark 6

Generalized cross validation methods have been heavily studied in the case of
spline smoothing (cf. [5,13-14,16-25,31]) as well as for ridge regression [12] and for
regularization of ill-posed problems [27]. In connection with general penalized least
squares problems, generalized cross validation is treated in [2]. It was also used in
(15] in connection with a cubic spline method. The basic statistical hypothesis that
the errors are independent identically distributed random variables is standard
in discussing such methods. We should note that we are not assuming that the
distributions are Gaussian, only that they are all the same. However, even this
hypothesis may well not be satisfied in some practical situations.

Remark 7

Error bounds for spline smoothing can be found in [16,19] and for thin plate
splines in [25]. Error bounds for penalized least squares fitting of surfaces using
finite elements can be found in [1]. We intend to treat error bounds for penalized
least squares in a separate paper.
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Remark 8

In some practical problems, in forming the error expression (3), it may be

S desirable to weigh the i-th measurement with a weight factor w; > 0fori =1,...,n.
In this case, the results of the paper remain valid with only minor adjustments.
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A SEMIINFINITE PROGRAMMING ALGORITHM FOR CONSTRAINED
BEST APPROXIMATION

KEN W. BOSWORTH
Department of Mathematics and Statistics
Utah State University

Abstract The general linearly constrained best approximation problem with arbi-
trary norm is cast as a semiinfinite linear programming problem, using a device of
A. Haar (1918) . The resulting optimization problem - that of maximizing a linear
form over a convex set described by the intersection of its supporting halfspaces -
can be solved numerically by a 2-phase hybrid “interior point / cutting plane” algo-
rithm. A brief outline of both phases of the algorithm is given. Phase 1 is concerned
with an “activity” analysis of the constraints posed on the desired fit, and with the
construction of an initial feasible solution. Phase 2 produces a sequence of feasible
(interior) and infeasible (exterior) solutions, both sequences converging to the opti-
mal constrained solution. The method is competitive in non-L, settings, especially
when the norm is not smooth and/or the constraints posed are particularly active.
Key words:  Constrained approximations, Semiinfinite programming, Interior point
algorithm.

1. Introduction

1.1 Rationale

Researchers in the empirical sciences are faced with the general problem of “fitting”
data in a pleasing , rational, and efficient manner. One means of attack is to cast the
data fitting problem as a constrained best approximation problem in a normed linear
space. The constraints should express various shape qualities and interpolation
conditions that the data fit must possess to be “pleasing” or useful. The choice
of norm is dictated by both the form of the hypothesized or suspected errors on
the data and by the application intended for the fit after it has been produced.
The choice of approximating space is made on the basis of one or several of the
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following criteria: computational ease, model predictions, degree of approximation,
and manipulative ease in later applications.

Although algorithms exist for solving constrained best approximation problems
for certain specific combinations of constraints, norm, and approximating family,
no general all purpose algorithm has been available. This is the motivation for the
present work; framing the constrained approximation problem as a semiinfinite con-
vex programming problem posessing special structure, and developing a numerical
algorithm that could then be applied in any situation that may obtain.

1.2 The linearly constrained best approximation problem

In this section the data fitting problem is cast in a mathematical framework, flexible
enough to handle most practical situations. Let {fi, fa,..., fa} be n linearly inde-
pendent, real valued functions defined and continuous on the compact set I C R*.
The linear space V := lin{fy, f2,..., fa} will be referred to as the approximating
subspace, and the set {fi, f2,..., fa} as the approximating family. Let f denote
real data, defined and continuous on the set I; i.e., f € C[I]. If one wishes to fit the
data f using elements from V, one needs a criterion for measuring the goodness of
the fit; this measure is usually a norm or seminorm defined on the linear space W
of functions gotten by adjoining f to V ; and is denoted by ||k||, where h € W. The
problem of finding g5, € V such that:

1S = gsall = ing. 11f - gl

is the classical problem of best approximation from a linear subspace. The element
Gba i5 called the best “||-|| - approximation” to f from V. Using standard compactness
and continuity arguments, one can easily prove the existence of such an element
gsa € V for each f € C[I).

However, one often desires that the best fit to the data also possess other shape or
structural qualities. In a large majority of cases, such constraints can be formulated
in terms of an indexed collection of linear constraints of the form:

a(p) < L(p; £,9) < b(p), Vp e J

where:

a(p):J — R®,
b(p) : J — R®,

with R the extended reals; L(p; f, g) is a continuous linear functional acting on f or
g € V or both, indexed by and continuous in p € J; and J is a compact topological
space, called the indez set, often identical with I or a subset of I. The function a
(resp. b ) is required to be u.s.c. (resp. l.s.c.) on J, continuous on J — a~!{-o0}
(resp. J —b~'{o0} ), and to avoid vacuous problems, a(p) < b(p), Vp € J.

In the case where I C R! , one has as common examples of such linear constraints
(assuming g € V and f are sufficiently smooth):
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1. Interpolation Conditions: the approximant g is to exactly agree with
the data f at the specified points p € J C I. Then take a(p) = b(p) = 0,
and

L(p; f,9) :== f(p) — 9(p), VP € J.

2. Non-negativity Constraints: the approximant g is to remain non-negative
over some subset J C I. Set a(p) =0, b(p) = oo, and

L(p; f,9):= g(p), V€ J.

3. Specified Moments: the approximant g is to have its pt4 moments, p €
J C Z, specified as either the same as that of the data, f, or as some value
my, . In the first instance, take a(p) = 4(p) =0 for p€ J, and

L(p; f,9):= /;x”(f(z) - g(z))dz.

In the second instance, take a(p) = b(p) = m, for p€ J, and

L(p; f,9) = /1 zPg(z)dz.

Notice that in examples 1 and 2, it happened that J C I, whereas example
3 shows that J may just as well be an arbitrary index set. One is free to impose
several of the above conditions simultaneously in any approximation problem, and
then the index set J might contain several “copies” of I or subsets of I.

1.3 Haar’s transcription
To transcribe the constrained best approximation problem:

mingey ||f - glf
P.:

a(p) < L(p; f,9) < b(p), Vp€J

into a semiinfinite linear program, one introduces homogeneous coordinates 7 :=
(215---1ZnyZn41)y Znt1 > 0, as follows. For each g € V, g = Yriaifi, and
f-g=f-Yiaifi,s0e:= f—g € W. In W, consider now all linear combinations
of the form:

n
w= Z-‘B.‘fi + zZn41fy  Zap1 >0,

i=1

which we write as:

w=7=-f, €n+1'f>0
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where:

T:= (xlv"'sznvzrﬂ-l)a
f = (fla---vfnvf)’
Eusr :=(0,...,0,1),

and the dot product is the standard scalar product on R*+! . Homogeneous is a
suitable adjective for the # coordinates, as each ray 7z := {Z | £ =ti, t > 0} C H,
where H := {Z | €,41 - £ > 0} , corresponds to precisely one error function e :=
f-9, 9=k, afi, via the well defined map: a; = —z;/Zpn41 = —U;/Unyy, i =
1,...,n.

NOW, deﬁning ﬂl(p) = L(p; 0, ]l) fori= L,...,n and ﬂn+l(p) = L(p; fvo) , the
collection of constraints in P, becomes, in homogeneous coordinates:

a(P)zns1 < ~ Y BilP)Ti + Bat1(P)Tas1 S b(P)Znyr, VP EJ.

=1

Defining the vectors:

ﬁ+(p) = (ﬁl(p)’ ree ,ﬂn(p)r ,Bn+l(p) - a(p)),
forallpe J —a=1{-o0},

ﬁ-(p) = (-,BI(P), cey _ﬂn(p)'r —ﬂn+l(p) + b(p))’
forallpe J —b-1{oo},

with 7 (p) := Opyq on a=2{—00} and 7i_(p) := On41 on b-1{cc}, the homogeneous
variable transcription of the constraints is the closed convex cone:

C:={ZeR™*'|fiy(p)-£<0, i_(p)-£<0,VpeI).

That is to say, any vector £ € C N H corresponds under the above rule of corre-
spondence to a function g € V satisfying the totality of constraints imposed on P..
Moreover, any g € V not satisfying some constraint has homogeneous coordinates
notin CN H.

Lastly, define the closed convex body (called by Haar the “Eichkérper™):
K:={fe R ||z-fl <1},

and consider the semiinfinite linear program:

With the above notation and definitions, one has the simple result:
Result 1. Problem P, and P}, are equivalent in the following sense:
1. P, is inconsistent if and only if Py has optimal solution Zpp = Opyq-
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2. P. is consistent and has || — gope]| = 0 if and only if P, has unbounded
feasible solutions and unbounded objective values; that is, there exists a ray
rg:={f=1td,t20,6n41-% > 0} C KNC. In this case, any gop: corresponds
to some such # under the map g = .1, o f; with e := —u,/tn41 and vice
versa: any such ray r; yields an optimal solution g, by the same map.

3. P. is consistent and has || f — gopell = E > 0 if and only if Pp, has a finite
optimal solution Z,p = ¥ With €,41 -7 = va41 > 0. In this case, the error in
the constrained best approximation is £ = 1/vn4;. Any constrained best
approximation gop corresponds to some optimal vector ¥ under the map
g = 1%, a;f; with a; := —v;/v,41 and vice versa: any such optimal vector
¥ yields an optimal solution g,,¢ by the same map.

The proof of this result is straightforward, and is in fact a direct application
of a minimum norm duality theorem of Deutsch and Maserick (1967) and found in
Luenberger (1969), page 119, and thus will not be given here.

2. A 2 phase algorithm

For convenience in what follows, the supporting normal vectors appearing in C are
renamed and reindexed, omitting any that are 0,44, i.e.,C = {Z € R**! | #(p)- T <
0, p€ J'}. Also,set CNH :=Cy.

2.1 Phasel

Problem P, can be efficiently solved by an interior point algorithm to be described
in the following section provided K N Cy has interior in R*+!. As K always has
interior, int(K N H) is empty iff int(Cy) = 0. In terms of the constraints in P,, this
situation obtains when either interpolatory conditions are imposed (not satisfied by
all g € V), or when a collection of “one-sided” constraints has “ganged up” to form
a “ generalized” interpolation condition or conditions. As the solution of general
problems is the goal, Phase 2 is preceded by an analysis of the cone Cyy determining
the dimension of its relative interior, followed, if necessary, by a suitable introduction
of a reduced set of basis functions {4, ..., s}, # < n, with linear span V C C, such
that all interpolation conditions are automatically satisfied by any § € V. Hence,
by adopting V as the approximating space, the resulting cone gy will have interior
in the reduced dimension space R"+!.

It turns out that the key to Phase 1 is determining whether 0,4, is in the convex
hull of &,43 U {(p)},e3-- If 50, one determines the set L of all such vectors which
are involved in nontrivial convex combinations yielding 0,4;. The resulting set L
has orthogonal compliment L+ containing Czy. In essence, the set L corresponds
precisely to the constraints (if any) which have “ganged up” in P, to reduce the
degrees of freedom in the approximating space. That is, a basis for L+ yields, under
the inverse of the homogeneous coordinate transcription, a reduced basis {§,-..,§x}
to work in, with dim(L+) = #, or shows, in case i = 0, that the problem P, is




overconstrained. Fortunately, such a task is efficiently undertaken; see Bosworth
(1988) for a detailed algorithm description. Moreover, if L is empty, then the just
cited algorithm provides one with a vector # € Cy, separating 0,4, from the convex
hull of &1 U {#(p)} ey

2.2 Phase 2: the tunnelling algorithm

A description is now given of the upper level structure of the actual Phase 2 semi-
infinite programming algorithm solving the problem P,. A detailed description of
Phase 2 can be found in Bosworth (1984) . Note that on successful completion
of Phase 1, a vector # pointing into the interior of K N Cy is available, and that
6,..,.1 € K NC. Note also that in the course of Phase 1, the dimension n of the
problem has been suitably redefined if necessary. Initialize £ := Opy1-

2.2.1 Shooting

From the point Z.,, “shoot” in the positive # direction to sz € 8( K NC). If no such
point exists, then # satisfies Result 1, condition 2, and the algorithm terminates.
If st ¢ 0K, then scale sz positively until it reaches K. Again, if no such point
exists, then the direction vector sz satisfies Result 1, condition 2, and the algorithm
terminates.

At sz, := s compute a unit outer supporting normal si; to 8K, using the
subgradient 8||Z - f]| at sz,. If more than one normal exists (nonsmooth norm),
select one with maximal n + 1** component. If the normal sf; = €,41, then sZ; is
the optimal solution to Py, Result 1, case 3, and the algorithm terminates.

2.2.2 Webbing

Set M := {f € R™| &4y £ =Eny1-571} and N := {T € R*"*| &y, - = 0}. Le,,
M=N + 3}1.

A collection of n + 1 supporting halfspaces to the set K NC with support points
on (K NC)N M is constructed by means of a n stage recursion (using the shooting
technique of the previous subsection), the aim being to “equidistribute” the support
points on d(K N C). These halfspaces will be used in the following stage of the
algorithm to define a minimal linear program approximating P;.

The kb stage of the recursion (k= 2,...,n+ 1) is “roughly” the following:

—— k-1 =
Tem k-1 = kl] 2:‘:1 STy
fi; = projysn;,i=1,....,k-1,

define the kth search direction i} by:

iy, = —-1,i=1,...,k-1
iy € lin{ﬁ;,...,ﬁk_1},

and then the supporting vector sz, and outer supporting normal si; to K N C
are found by “shooting” from Z.y, -1 in the positive @y direction. However, here



sh; is allowed to be a supporting normal to the cone C. (If the vectors {; f;ll

are dependent, randomly chosen vectors in N are added to the set until a well
defined direction i) can be obtained from the above relations. hence the adjective

“roughly”.)
By construction, KNC C {f € R**!| sn; - T < s%;-s%;} fori=1,---,k. At
the conclusion of the recursion, set om 1= ;:_—l- bandls I8

2.2.3 Analysis of a minimal linear program

Consider the simple linear program:

P max €n41°T
Ip * - - ~ .
mp ;& <sn;-sz; 1=1,...,n+1

By construction, K NC is within the feasible region defined by Py, and hence an
optimal value of P, provides an upper bound on the optimal value of P,. Moreover,
Phmip is trivial to analyze (one “Simplex Pivot”). Since Ppyp can be considered to
be a “coarse” discretization of the semiinfinite program P}, it will be reasonable to
use any information obtained from the optimality analysis of P, as approximating
the situation in Pj.

Four cases may obtain in Ppp:

1. There exists a unique optimal solution ¥,,;,. Then the feasible region in
Pomip intersected with H is a bounded polytope containing K N Cy. The
solution ¥,y can be considered an approximate solution to P,. Define a
new search direction for the “shooting” stage, @ := Tmip — Zom-

2. There exists infinitely many optimal solutions Wy, all with the same n+ 1%
component. Define a new search direction @ := ¥y, ~ £om , Where Ty, is the
closest optimal solution to Z.,. It can be easily shown that this selection
of & has nonnegative n + 1** component.

3. The system of equalities AZ = b with row; A := s#; , b; 1= sh; - 5%; , i =
1,...,m + 1 is singular, but has vectors & € Kern(A) with positive n + 1%
component. Select the unit vector # € Kern(A) with maximal n + 1%
component as the new shooting direction.

4. The system A% = b is nonsingular, but Pomip has unbounded objective values.
Then it can be shown that there exists a ray rz of unbounded feasible
solutions to Py, with unit direction vector # having maximal positive n+1%
component. This is the new shooting direction.

In each of the 4 cases, a vector i is obtained, which heuristically points from
T.m € K NC in a direction of “ascent” for P,

2.2.4 Convergence
If, in case 1 or 2 above, Tmjp ~ Tom is “sufficiently small”, then one can conclude

convergence. If &,41 - Zon < (1/tol), where tol is an upper bound on the error
needed in a near-best approximation, then one concludes convergence. In either
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case, to obtain the final ¥ to use in computing gsq, shoot one last time from Z ., in
the @ direction to ¥ € (K NC).
Else, one returns to the shooting stage, and continues with the algorithm.

3. Conclusions

Linear convergence of the algorithm can be concluded provided Phase 1 is suc-
cessfully completed; see Bosworth (1984). That is, the sequence of points {Z..}
converges in objective value, from below, to the optimal value for P, at least at
a linear rate. If Py is in situation 3 of Result 1, then one is also guaranteed the
existence of subsequences of {Z.m} and {¥np} having convergence in R™**! to an
optimal solution ¥ of P}, (different subsequences can have different limits; however,
all tend to the same objective value). In polyhedral norm situations, with a finite
set of constraints, the algorithm converges in a finite number of steps, often out-
performing the Dual Simplex Algorithm of linear programming, due to its ability to
bypass in one step several pivots taken by the Dual Simplex Algorithm. (The Dual
Simplex Algorithm computes a sequence of infeasible solutions, converging to the
optimal solution of P, similar to the solutions {@mip} computed here.)

Numerical results for the case of uniform norm shape constrained approximation
problems have appeared in Bosworth (1987) . Applications to the I; and other spe-
cially tailored norms will appear shortly. One final observation is that the viability
of the algorithm appears most strongly in non !, settings. In constrained I settings,
the code of Lawson and Hanson (1974) is to be recommended.
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INFERENCE REGION FOR A METHOD OF LOCAL APPROXIMATION BY
USING THE RESIDUALS

M. BOZZINI
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Universita’ di Lecce
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Abstract We consider a formula for smoothing noisy data in which the variances
are different. The formula is obtained by a local weighted approximation. The
weight is a function of a smoothing parameter a, which varies with the point.
Then a diagnostic band for data analysis is obtained : this determines whether
an initial and computationally quick choice of a constant for all the data allows a
homogeneous accuracy of approximation on the whole domain. In the case when
it is necessary for a to be variable, a fast algorithm to evaluate a is proposed.

Key words: Inference region, Weighted local approximation, Smoothing, Vari-
able smoothing parameter, Data analysis.

1. Introduction

In the problem of approximating a function from a sample of function values, it is
of interest to know the reliability achieved with the chosen approximation method.
In other words what is the probability that the approximating function fits the
unknown function to a specified accuracy?

On this subject we refer to the work by Wahba (1983), who, on the basis of a
Bayesian model (that is to say the region is that within which the approximating
function can fall with that sampling) for spline functions, assuming that the noise
variance is constant determines an inference region with constant band. A later
work by Silverman (1985) generalizes the work by Wahba by considering more
general data configurations and noise characterized by variance 0? = 0%(z) as a
function of the abscissa . The band obtained varies according to the data location
density and variance.
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Miiller and Stadtmiiller (1987) study a method with a localized smoothing
parameter based on estimates of the higher derivatives of f(z).

In this note, on the basis of an approximation method with constant window,
we construct an inference region for the unknown function f(z) (in other words
f(z) falls in the region derived from that sampling with given probability) by
using samples of random variables f,(z) r = 1,...,1 | > 1 and finite, withk
E(f.(z)) = f(z) and covariance matrix o2, = §,,02.

The method, which is computationally simple, has variable band and indicates
the regions where more accuracy is needed when constructing the approximating
function.

Then a computationally straightforward method is suggested to improve the

approximation locally, by modifying the local smoothing parameter.

2. Approximation formula

Let a set J = {z;, f(z:)}Y be given on a domain D = [a,8] C R . An approximation
to f(z) is required.

We assume that the function values f(z;) are the result of sampling from I
populations with sample sizes ny,n,,...,n; , respectively, each one according to a
uniform distribution (for simplicity) and ¥\ n, = N and such that

E(f:()) = f(a),

2 _ 2
Opy = 0440,.

For simplicity, in the following it is assumed that n, =nforr=1,...,1.

Let us consider the method studied in Bozzini and Lenarduzzi (1988a) to ap-
proximate the unknown function f(z).

Precisely, after indicating with z; a generic assigned point , take a neighbour-
hood I = [z; — R,z; + R] and determine the constant function & by the weighted

least squares method: i
min 3 wia(c - f(z;))"
z€l

where the weights w;, have the following expression:

Wi, = { (d‘-l»la)o,5 1f d< R’
- 0 ifd> R,
with d? = dist’(z;, z;) the Euclidean distance and a a positive smoothing param-
eter.
Then the approximating function

TV &di(z)
21 ¢i(z)

m(z) =

(1)




T

R %)
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is constructed.

Here the ¢;(z) are smouth functions with support (z;— Ry, z;+ Ry) with Ry < R
and such that m(z;) = &.

This approximating function depends on a; in particular, as @ — 0 the function
m(z) tends to an interpolating function, while, as @ — oo m(z) tends to the
function in which the constants ¢; are solution of the weighted least squares problem
with weights w;, = a%r-

3. Inference region

Let us assume we work in asymptotic conditions (that is to say with N — o0, R —
0, NR — o0) and that we also have information beyond the boundary of D.

After constructing the function 7i(z) on the basis of (1) we determine a com-
putable inference region.

From the Markov inequality (see Ross (1980) ), one gets fori = 1,..., N:

Prob{] f(z:) — (=) 1< BEulf(z:) - m(z)P 1} > 1~ 25

The expected mean squared error E.[f(z;) — m (z;)]?, which will be called
EMSE,; in what follows, has the expression:

EMSE; = {E[f(z:;) - m(z:)]}? + var((z;))

and,of course,it is a function of the parameter a.

In Bozzini and Lenarduzzi (1988a) it was proved that there is one and only one
value af of a that minimizes EM SE;(a):

EMSE.(QT) = mina>oEMSE'.-(a)
and such a value falls in(0, R?) or in [R?, 0o) depending on whether the ratio

R* f('2)2
[ 2nR]

is greater or less than one, (here § = (T! J;)~!

Furthermore, using the hypothesis that f(z) can be developed as a power series,
the principal part of EMSE;(a]) has the following expression:

(2
EMSFE(a* )~ R2 i
(af ) = it 2n\/—‘7r
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P,

if af € (0, R?) and

MRy L _ Ry () _
EMSE;(af ) ~ i 30"") L

-7

2R3
3a*

)

if af € [R?, 00)
It can be verified analytically that an upper bound to the principal part of
EMSE;(a}) is:

1.58pii(a? ), (2)

where p;;(a) is the asymptotic value of the weight w;,/ Y- w;, (index of influence
of the i-th datum) divided by :‘; and associated to the value ¢ at the point z;.

Consider the random variable

_ ZN’ ﬂ?(ft - ﬁ‘m.’(zi))2

b = =R (L pata)

(3)

with g7 = &;

then: "
TN B2EMSE; M pi
TN -p) TV -pa)

If one assumes that the second derivative does not change too much on / then

E.0) =6+

AMSE () = E. /1 (f(2) — n(t))?dt = 2R EMSE;(a;) + O(F)

In optimal conditions (that is to say R < n~%,a? < R?), it has been proved in
Bozzini and Lenarduzzi (1988a)that EMSE;(a?) = O(n~%) and p; = O(n~%); so:
E(8(c} ) = 6+ 0(n™4). (4)
As can be seen by developing the calculations, one has:
var(6(a} )) = O(n~%)

so that f(a} ) is consistent estimator for 6.

From (4) it follows that the principal part of 1.5p;(a})E.(0(a )) is given by
1.56v;;(af). On the basis of (2) and (3) it follows that an inference region which
is computable for f(z) at the probability level (1 — ) is given by:

M gp () = k(15051 pis(? )} < f(2) < 1 g (2) + K(L50,s pilet N2 (5)

In order to make the method more efficient, in the case when the second deriva-
tive does not change too much on the domain, it is preferable to calculate a constant
value of a for all z; € J.




This is possible by calculating the value a,,; which minimizes IMSE =
E. [p(f(t) — m(t))*dt (see Bozzini and Lenarduzzi (1988a)).

In this case (5) becomes: (5)

M Gy (2) = k(1.500,0 Pis(@opt )} < F(2) < 10 gy () + £(1.5001,5 Pis(0tope )))E

In the case in which, for some z;, (f,-(')))2 > (f,‘}’)z =f} %(t)dt then, as de-
rived in Bozzini and Lenarduzzi (1988a), both EM SE;(a} ) and E(6(aope ))pii(topt )
increase because of the bias; therefore this band is wider than that for the other

points.
Remark:In the case when there is only one variance, that is to say o? = o? |
r = 1,...,1, the above remains true provided that one substitutes w;, = (7,:7)6,

with wj, = z+= and § with o2.

4. Variable smoothing parameter

Let us consider a smooth function f(z) which has peaks at some points. Such a

function therefore has a second derivative f,‘}” which is almost constant and given

by [ f_’—f—dx but at the point z;, f,-(z)2 > f}}”.

The parameter a,which is optimal on the whole interval [a, 8], falls in {R?, c0) as
the method constructs an approximation function in the least squares sense which
removes the noise and provides a smooth function. On the contrary, the optimal
value of a at the point z; falls in the interval (0, R?) in order to give a function
which is locally nearer the interpolating function.

Consider the random variable:

7 ZU B =)t
(1 —pi)

Its expected value is
IMSE _ > Pii
T(1-pi) XTQ-pi)

In the case we are studying, the optimal value of a for IMSE is a,, and therefore:

E(Z)=6+

E(Zop) = 6(1 + kyn~?).
Assuming af X n~% one gets:
E(8(a? )) = 6(1 + kan~454),
from which



E(Zop)
E.(8(at))

_4=c
~1-— kgn S—e,

Ratio =

On the contrary, when one constructs locally the function 7 (z) using the value
a.pe instead of af :

Eu(B(eip )) = 61 + kon™35),

from which E(Z.y0)

] opt ~]— - 5-7:
Ratio = Eo(0(cn ) ~1—ksn &5
(here the k; are positive constants).

It is now evident that the band, calculated by using 6(a,, ), is no longer an in-
ference band but only a tool for data analysis : in fact on one hand E(6(a? ))pii(a? )
and EMSE;(a} ) are of the order of n'i':—:, but on the other E(6(ape ))pii(copt )
is of the order of n—4%.

In order to obtain a better estimate of the function on that interval and more
reliability it is appropriate to modify locally the value of a.

This can be done according to the following law:

Zopg
Batom )

where g is an increasing function of its argument and g(1) = 1.

a=a,y *g{

5. Numerical results

We refer to two cases from the references.
For the estimates of a,,; and o? see Bozzini and Lenarduzzi (1988b) .
Case |: test function from Miller and Stadtmiiller (1987):

ga(z) = h(0.25,0.05) + h(0.5,0.1),

where h is a Gaussian density N = 100, k = 4.48, R = .039, ¢, = 0.01, o, = 0.02.
The function is smooth, so a good approximation accuracy is reached and the
confidence band is uniform enough, by using (6). The results are presented in figure
1.
Case 2: test function number 4 in Wahba (1983):

0, Oﬁxﬁé,

_ ) 3et-1), 1<ec<i
fE)=1362-%, 1<e<d
0, f<i<y,
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¢
! normal noise ¢ = 0.02, N =100, k =4.48, R =.049, a = 0.01. .
é ' The function presents discontinuity points in the first derivative.
When using (6) to construct the inference band, one observes an enlargement
; of the band near the discontinuity points (see figure 2).
In figure 3 can be seen the approximation with the global a and the data. o
To obtain better accuracy it is possible to use the method described in section
4, with the following function:
g(ratio) = (ratio)™.
The resulting band is presented in figure 4. o
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NUMERICAL METHODS FOR CHEBYSHEV APPROXIMATION OF COMPLEX-VALUED
FUNCTIONS

G A WATSON
Department of Mathematics and Computer Science

University of Dundee

Abstract This paper is concemned with the problem of best Chebyshev approximation of a given com-
plex function on a contour of the complex plane. The emphasis is on the provision of methods which
can combine global convergence with rapid local convergence, and some different approaches are
examined, with particular attention being paid to the special case when the approximating function is
lincar. Examples are used to illustrate various situations which can arise, and numerical results are
presented to demonstrate the perfomance of the methods on a variety of linear problems.

Keywords: Chebyshev approximation, complex functions, algorithms, global convergence.

1. Introduction
Let T be a contour of the complex plane C, and let r:C*xI"'-C be an analytic function. Then of
interest here is the problem:

find ze C*to minimise |ir (z.. )ll , O]
where lIr(z.. )l = Tglr(z,w)l, and z= (2,22 ....2,)7€C". Such problems frequently arise from

best approximation problems defined on a simply connected region of the complex plane with boundary
T, for the use of the maximum modulus theorem means that attention may be restricted to the boun-
dary. For j =12,..n, let ¢;(z,w) denote the partial derivative of 7 with respect to z;. By considering
the real problem equivalent to (1) (i.e. with 21 real variables formed by taking the real and imaginary



parts of z), the following result may be established (see, for example, Ben-Tal et al (1979)), giving
necessary conditions for a solution to (1).

Theorem 1 Let ze C* solve (1). Then there exist m<2n+1 points w,w5,...,.w, in I', with
Irzw;)! = lIr@z. N, j=12,..m,

and A;, j=1.2.....,n real nonnegative numbers (not all zero) such that

A, 7w 0 @w;) = 0, k=12,....
=1

Remark For the special case when r is an affine funclion of z, it follows that the conditions of the
theorem are also sufficient for a solution, and therefore represent characterization conditions (see also
Lorentz(1966)). Otherwise the conditions may be said to define a stationary point.

Assume that ' can be parameterized by the real number t€([a,B] so that w:fa,B]oI and
w; = w(t;), j=12...m. Define f :R*XR >R by

f&a=lr@w)!? telaBlzeC",

where x = [’;]ER"‘ , and the superscripts R and / denote real and imaginary parts respectively.

Without loss of generality, assume that ¢,f5,....f, are internal to [,8). Then if m and p are known, the
conditions of the theorem may be written as the nonlinear system of equations

Z‘{l,- Vf (x4;) =0, (2a)
J‘
1-$4, =0, (2b)
j=
f&x4)=0, j=12..p, (2c)
f&xb)»h =0, j=12..m, (2d)

where V denotes differentiation with respect to xe R?* , the dash denotes differentiation with respect to
¢ and the fact is used that

Re(T®) |_p2a
Vf (x,0)=2 [—lm(?¢)]ER .

with ¢=($,,4s, ' - * $.)7 . This is a system of 2a+m+p+] real equations for the 2n+m+p+] real



unknowns xeR>* A, €R, j=12,.m, t;€R, j=12,.p, and heR, where h=|Ir(z,.. )I* at a solution to
).

2. A locally convergent method

The Jacobian matrix of the system (2) may be written in the form

H 0 AOTTA G;]
00
AO D. 0 3
D
G — [0‘] 0 J
where
H=3MV (1) eR?,
j=l
A=diag {l‘,M. - 'xp}a
3f (x, 1
A}l =—'§_‘(;_x.l_). j=102v--po k=l»2!-~-’2’lt
of (x, t;
Ga =Lg‘xt+), j=12pm, k=12..2n,

D = diag {f " (x,1; ), j=12..p),

Dl= diag {.f'(x' lj )’ j‘_‘l’zi"p ]i

and e denotes the vector in R™ all of whose components are 1. Notice that D is negative semi-definite

at a solution to (2) which is also a solution to (1). Also

_ | Re(@®7) Im(e§) Re¢/T) Im(rT)
Vi (x1)=2 [—Im(” ) Re (:%’)] +2 [Im ¢T) —Re (rf)]' @

where T is the Hessian matrix of r with respect (o z.

The system of equations defining the Newton siep is therefore an unsymmetric 2n+m+p+1 by
2n+m+p+1 system of equations. Considerable improvement may be obtained if use is made of the fact
that D, is zero at a solution to (1), so that it may be replaced by zero in (3) without inhibiting a second



order convergence rate. The system of equations defining the increment vector may then be written

H 0 ATA GT| [ox -GTA
0 0 0 —]| |5h] _ [ATe-1
A0 D of lal=1|-¢ | ®
G- 0 0] |32 he-t

where f € R? denotes the vector with jth component f'(x, 1;), j=12,..p, and fe R™ denotes the
vector with jth component f (x, ¢; ), j=1.2,..,m. This system of equations may readily be broken down
into smaller systems. Indeed the following algorithm may be used which first computes a first order
estimate of A ( an approximation to A+3A satisfying (5)) and then provides approximations to 5x, 84, 5t
satisfying (5). When used as increment vectors, a second order convergence rate is not inhibited ( see,
for example Watson(1985)).

Algorithm 1
GT . R|.
Step 1 Let CT= [*,]=[Y.21[0]-YR,
where (Y : Z] is (2n+1)x(2n+1) orthogonal and R is mxm upper triangular, nonsingular if C has full

rank (a necessary condition for the system (5) to be nonsingular).

Step 2 Determine A satisfying RA = -Y7e,,,; ( €., is the (2n+1)* co-ordinate vector) and scale A so
that ATe = 1.

Step 3 Solve R7d, = he-t.
Step 4 Form W = H — ATAD™'A , and solve
ZIWZ\d; = ZT(ATADY( - WY \d, ) - 1,,
where Y,.Z, denote the first 2n rows of Y Z respectively, and zJ denotes the last row of Z.
Step 5 Form E:]:Yd,+2d2andsetx=x+8x,h = h+h
Step 6 Form &t = -D~'(f+A &) and (unless convergence) set t = t+5¢ and return to Step 1.

This algorithm will be dominated by the calculation of the QR factorization of CT in Step 1. It
can converge to a solution of (1) if provided with good initial approximations, and with the correct
information about m and p. Of course even if convergence is obtained it has still to be confirmed that
h =|ifll , and this is a nontrivial problem in itself. Its solution is connected with a modification of this
method in which the vector t at each iteration is defined to be the appropriate set of m local maxima of



q
|
the current f in [aB): this calculation can be done as a preliminary step, with Step 6 of course no
longer required. Provided that D is nonsingular, and f (x.;)}#0j=p+1..,m the implicit function
theorem can be used to give t as a differentiable function of x, and the Newton step (in the variables P
x,i A) derived. The analogue of Algorithm 1 is then obtained by introducing Step 0 as described, drop-
ping Step 6 (testing for convergence in Step 5) and setting f to zero in Step 4: a second order conver-
gence rate can again be established.
The following examples all use Algorithm 1 in its original form. ‘
Example 1 (Glashoff and Roleff(1981)) Consider the approximation of w® by a complex polynomial of
degree 7 on the rectangle [-2,2] x [-1,1] in the complex plane. Because of symmetry, it is sufficient to
consider the approximation of w® by a real linear combination of 1,w2w*w® on e
_d 2+it, O0se<1
wit) = {(3—t)+i. %<3
The fact that the coefficients are real means that H A and G may all be reduced in size with conse-
|
quent reduction in the computation involved in Algorithm 1. Taking the initial approximation
z = {(-15.19822,0), (46.28396,0), (-31.88876,0), (7.748537.0)} , t = (0.325, 1.8, 1.0, 3.0), with m = 4
and p = 2 (interpreting ¢ = 1.0 as an end point), and k = 10428.39, the performance of the algorithm
is summarized in Table 1. The column headed k gives the iteration number and & gives the maximum <
modulus component of 6x,04 and 3t. The CPU time (DEC 10 single precision) was 0.78 seconds.
(Notice that the size of the matrix (3) in this case is 11 x 11, whereas the corresponding Jacobian
matrix in the method used by Glashoff and Roleff is 15 x 15).
|
k S t 2 h
1 | 0.149281 | 0.315838 | 1.794251 | 10428.54
2 | 0479269 | 0.316292 | 1.795387 | 10429.02 €
3 | 0.008201 | 0.316291 | 1.795388 | 10429.03
4 | 0.000025 | 0.316291 | 1.795388 | 10429.03
d
Table 1
Example 2 Consider the approximation of 1/(w — (2+i)) by a polynomial of degree 7 on the part of the
.- d
l.‘
«




unit circle defined by 6e[0,3n/2]. In this case m=9 and p=7. Taking the initial approximation z =
{(-04,02), (0.1202,0.1602) ,(-0.01653,0.08797), (0.01073,0.03786), , (0.001226,0.01225),
(0.008144,0.002251), (0.004343.-0.00308), (0.001954,-0.000459)}, t=(0,0.3436 ,0.8467, 1.399,
2.0985, 2.815, 3.607, 4.3196, 3/2) and h=0, the algorithm performed as shown in Table 2. The CPU
time was 2.71 seconds.

k ] hx1077
1 § 0.04765 4.0788
2 | 0.04300 43852
3 | 0.01111 4.44382
4 | 0.000362 | 4.44747
S | 0.000005 | 4.44755

Table 2

Example 3 This is the approximation of exp (w) on the part of the unit circle defined by 6¢€[0,x] by a
rational function formed by the quotient of two complex polynomials of degree 2: the rational function
is normalized by choosing the constant in the denominator to be 1. In this case m = 6 and p = 4. Tak-
ing the initial approximation z = ((1.0066,0.0003384), (0.51337,0.039861), (0.085256, 0.01995),
(-0.48537, 0.037976), (0.073634, -0.015799)}, (with the natural ordering of the coefficients), t = { 0,
Ta, 22a, 42a, 650, & }, where a =n/81, and A=0.0, the algorithm performed as summarized in Table 3.

k H hx1077
1 | 0.02148 | 1.69225
2 | 0.01872 | 1.77062
3 | 0.000452 | 1.77476
4 | 0.000002 | 1.77477

Table 3




The question remains: how can information about m and p, and also good approximations to the
. unknowns, be provided? It should be emphasised that extremely good initial approximations may be
required: for instance in Example 3, small perturbations of the initial values can lead to divergence. In
particular, very good approximations to ¢ are often necessary: there is more about this later on. Perhaps
the most obvious way of finding initial data is from the solution (or approximate solution) of a discreti-
zation of (1), where I is replaced by a finite discrete subset, and this gives rise to a class of two-phase
methods. Algorithms of this type have been suggested for lincar problems (when r is is an affine func-
tion of z) by, for example, Glashoff and Roleff (1981), Grothkopf and Opfer (1982), Opfer (1982) and
Mason and Opfer(1986), based on the formulation of the discrete problem as a semi-infinite linear pro-
gramming problem. Linear programming methods may be used to approximately solve this problem,
and advantage can be taken of the special structure to make this efficient (see, for example, Streit
(1985, 1986), Streit and Nuttall (1982,1983)). Notice that this procedure requires a double discretization
of the original problem (1).

An alternative first phase procedure for the linear problem is suggested by Watson(1988) where
the discretization of problem (1) is (directly) solved as a nonlinear programming problem. Advantage is
taken of the special form of the problem so that a second order convergent method is obtained, and
computational efficiency is achieved by a procedure which restricts attention to small subsets of the ori-
ginal set of discrete points. This method may be adapted to apply to nonlinear probiems, although since
the convex nature of the problem is lost, the provision of a satisfactory algorithm represents a nontrivial
modification and the implementation details have still to be resolved. Some success has been obtained
through the use of a Gauss-Newton type of approach (the simple device of ignoring the: second term on
the right hand side of (4)), and this was used to generate the initial data for Example 3.

Of course both linear and nonlinear discretized problems are examples of nonlinear minimax
optimization problems, and standard methods for such problems are available. The main computational
effort is expended in identifying the correct index set on which a solution is defined (analogous to the
points wy,wj, . . . ,w, of Theorem 1), and most methods are active set methods which iterate towards a
correct index set through equality constrained quadratic programming subproblems defined on estimates
of this set. Recent developments have been concemed with making better use of the special structure
and solution characterization of minimax problems, and for example a method having this goal is given
by Yuying Li(1988). A particular feature of the problems considered here is that fine discretizations
(and therefore a large number of points) may be necessary, and the relative effectiveness of different

_



approaches has yet to be studied. In particular, the treatment of nonlinear problems of the type (1) and
their discretizations has received little attention (with the exception of some rational approximation
problems) and so is not something that can be properly dealt with here. For the rest of this paper,
therefore, although much of the theory carries over (or may be modified to apply) to the nonlinear case,
attention will be confined to the treatment of the linear problem for which

r(z,w)= .nzlzj%(w)—F(w). werl, ©6)

j=

where F:T—-C ¢;:T'->C, j=12,..,n are analytic functions. Perhaps the most important consequence of
this is that V2f (x, ¢) is given by the first term on the right hand side of (4) and so is positive semi-
definite; therefore so also are H and W provided that the components of A are non-negative. H is of
course independent of x.

3. Globalization
The problem (1) may be stated in the form
minimize A
subject to f(x,t)<h, telaB), ¢))
and a corresponding discrete problem may be written
minimize h
subject to f(x,,)sh, i=l2,. s, (8)
where ;e (a,B], i=1,2,..s. Clearly if the discrete set contains the points ¢; defined by Theorem 1 then
the minimum values of both problems will be the same. One approach to solving (7) is therefore to
iterate on a sequence of discrete subsets which in the limit contains the appropriate optimal set.

Given xeR?* let 11 42,...44 be the set of local maxima (assumed finite) of f (x, ¢) in [@,B]. Then
fx4)=0, t;e(@B),

and provided that £ (x, 1;)#0, t;€(aP), f(x,1;) #0, 1;€ (@B}, the implicit function theorem may be
applied to give 1;, j=12,...g as differentiable functions of x. Based on these g local maxima, and
given A€R! non-negative , defin: feRY, GERV HeR™*, WeR™2 (CeRV™D g
in Algorithm . Let & = :‘;Iaaf(x «£;) and consider the quadratic programming problem
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minimize p+1d"Wd
subject to Gd-pe < he. )

Theorem 2 For r given by (6), let p.d solve (9) defined at x. Then

(a) if p = 0, x solves (7),
(b) if p < 0, d is a descent direction for ||f (x , . )}l at x.

Proof By assumption

W=H-ATAD'A
is positive semi-definite if it is defined. The Kuhn-Tucker conditions imply the existence of a non-
negative vector peRY such that

n=1,
Wd+GTu=0.
Thus
dWd+d"G™p=0,
so that d’GTp <0. Also

nT(he-~Gdipe) =0,
implies A+p~u'f = u’Gd <0, so that p < u'f-k < 0.

If p=0, d"Wd =0, so that if d= 0, there is another solution p =0, d = 0, and the Kuhn-Tucker
conditions are then equivalent to (2) being satisfied.

Now assume p < 0. We may write
[i®@) =fxx)) j=12..q,
showing the dependence of ¢; on x. Further for Y>0 small enough

IWf (x+vd, i = &\’l‘x'f j(x+d).

Now define J by

h=f, jel.
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Then d"Vf; <p <0, jeJ, so that
i) = f; (T V4007

<f;(x)
for v > 0 small enough. It follows that
"f (“"Yd- -)" < }'Sl[asx'f] (!) = "f (x' 0)",

and the result is proved.
Remark This result goes through for nonlinear problems provided that W is a positive semi-definite
matrix (or is replaced by a positive semi-definite matrix).

The new point x+yd may be obtained by a line search, and it is usual to choose y to satisfy the
inequality

Iif (x+wd, D < If (x, )P, 10
where < is a small positive number, for example 0.0001, and ¥y is large in [0,1], with the value 1 chosen
if possible. Then the following result may be established.

Theorem 3 Let {d*),(p*) be sequences defined by solutions of (9) at x* using (10), where the super-
scripts k on other quantities imply evaluation at x*. Then if {W*),{d*} are bounded, the limit points of
{x*) solve (7).

Proof The result that {p*}— 0 may be established by the application of standard techniques available
in optimization theory.

Going to a subsequence if necessary, let {x*}— x*. Now, using boundedness, and going to
further subsequences if necessary, p*— p° . W*>W*, d*—> d° as k—oe, Thus d*, p* (=0) solve (9) at
x=x",W=W* with objective function value zero. Thus a (possibly different) solution is given by
d =0, p =0 and the conclusion that x is a solution follows as before,

The following algorithm may be interpreted as being of multiple exchange type.




Algorithm 2
Step 0 Determine the local maxima of f in [o8], say #1.12,....,. Set & = ||f (x, . )Il.
Step 1 Solve (9), and unless there is convergence, choose ¥ so that (10) is satisfied, set x = x+yd and go
to Step 0.

If the problem (9) is solved with the constraints fixed as equalities , then provided that p > 0 the
situation is as before. However the solution may now be obtained in an efficient manner by steps simi-
lar to those used in Algorithm 1. An alternative exchange algorithm may therefore be defined as fol-

lows.

Algorithm 2a

Step 0 As in Algorithm 2.

Steps 1-5 As in Algorithm 1 (with f,G, etc. defined on the curreat set of local maxima ¢,,02, - - - 4,),
except that we can set f = 0 in Step 4, and a full step is not necessarily taken in Step S for the new x.

Although the steps of Algorithm 2a are computationally more efficient (and the connection with
Algorithm 1 immediately gives a desirable jocal property), there is no guarantee that all the components
of the multiplier vector will be non-negative at solutions to (the modificd) problem (9), in particular far
from a solution to (1). Therefore an active set strategy (for handling negative M;) is required for a prac-
tically useful (globally convergent) algorithm. On the other hand, the solution of the inequality con-
strained problem (9) automatically picks out the correct active set in the event that not all constraints
are active. Eventually, the two algorithms should be effectively the same, so that a second order con-
vergent rate is normal with Algorithm 2. An important part of both these algorithms is the calculation
of all the local maxima: this is needed not just for Step O, but also for the implementation of the step
length test. The process is not a finite one, and typically is achieved in two stages: firstly a grid search
to approximately identify the locations of the maxima; secondly a local procedure (for example
Newton's method) to give mare accurate values. Incidentally, this is an area in which the availability of
a parallel computing facility could lead to great benefits.

An exchange method of either kind can be applied to solve discretizations of continuous prob-
lems, with fairly obvious modifications to the algorithms (reflecting the absence of (2c) from the condi-
tions to be satisfied): local maxima on the finite set only are used, W = H in Step 4 of Algarithm 1
and also in (9) and the first term on the right hand side of the system of equations in Step 4 is absent.
However there are potential difficulties, if the number of extrema of discrete and continuous problems



do not match. (In this context extrema refers to points where the norm is attained.) For example for
the approximation of F (w) = 1/(w—(2+i)) by a polynomial of degree 3 in the first quadrant of the unit
circle, there are 5 extrema of the continuous solution, with parameter values 0, 0.259415, 0.733998,
1.269364, w2. However the solution using the algorithm of Watson on m=101 equispaced points gives
rise to 6 extrema, including the neighbouring pair 0.2513 and 0.2670, and taking m = 1001 equispaced
points gives 7 extrema, including the triple 0.73042, 0.73356 and 0.73827. For many problems this
discrepancy does not occur, and the extent to which it can be attributed to the use of finite precision
arithmetic is not clear. Nevertheless, there are two possible dangers associated with this phenomenon:
firstly ill-conditioning because of the proximity of active points, and secondly failure of the algorithm
through failure to properly locate all of these relevant local maxima as the computation proceeds. If
the situation is an inherent property of the problem, it paraliels a phenomenon which occurs in real
linear Chebyshev approximation: if a continuous real problem (with n real coefficients) is discretized,
then in the full rank case there is always a solution with (n+1) extrema, and this is the solution which is
obtained if a standard technique is applied. However for non-Chebyshev set problems, the solution to
the original continuous problem (assumed unique) may have fewer than (n+1) extrema: such problems
have been referred to as singular by Osborne and Watson(1969). A difference in the complex case is
that it does not seem possible to predict in advance the number of extrema of discretized problems, and
indeed this appears to depend on the particular discretization. Nevertheless the same interpretation of
singularity may be made.

The above phenomenon has no bearing on the direct solution of the continuous complex problem

by exchange methods of the type described above, and Algorithm 2 was applied to a number of
different problems. Far from the solution, convergence could be slow and two modifications were found
to be beneficial : firstly, W was modified to W+ul, for some p2> 0, with p being allowed to decrease as
the algorithm approaches the solution; secondly in the early stages only local maxima on a discrete set
were determined (and so W was chosen equal to H'), with accurate local maxima obtained only when p
became sufficiently small.
Example 4 This is the approximation of w by a polynomial of degree 2 on the first octant of the unit
circle. Initially local maxima were sought on a grid of 101 equispaced points. The initial approximation
was given by z; = (0,0), j=23, z; = (1,0) and the performance of the method is summarized in Table 4.
The CPU time was 6.63 seconds.
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k |4q B 14 Y i

1 1110 -5.85 111274

2 [2 (05 -1.60 1| 0.647

16 | 4 | 0.0001 | -1.6E-5 | 1 | 0.014709

171410 -8.E-8 | 1] 0014708

184 {0 -2.E-8 | 1 | 00147077

191410 -lLE-8 | 1 | 00147077
Table 4

An alternative to the above method is to revert to a 2-phase approach, with algorithm 2 (or
indeed Algorithm 2a) as a second phase. This makes the 2-phase method more robust (at the expense
of extra computation) and permits convergence to a solution of (7) even if incorrect information is sup-
plied at the end of the first phase, or poor approximations only are available. It also means, however,
that while global convergence properties are important, the main emphasis can be on local behaviour; if
Algorithm 2 is applied with all constraints initially set to equalities, then frequently no change is
required to the active set, so little loss in efficiency results in using Algorithm 2 as opposed to Algo-
rithm 2a. In addition W may be used without modification, and Y= 1 is the expected value satisfying
(10). Therefore the next algorithm tested was based on combining the method of Watson with Algo-
rithm 2. In fact a version of the first method was used where solutions were obtained on successive
discrete sets defined as follows. Initially 2a+1 equispaced points were used. Subsequently each set con-
sisted of the current set of extreme points supplemented by all the local maxima of f on the original
discrete point set. When a sufficiently small value of p was reached, or a sufficiently small increment
vector was obtained, Algorithm 2 was entered.

Algorithm 3
First Phage The algorithm of Watson, modified as described in the previous paragraph.
Second Phase Algorithm 2, with all constraints of (9) initially set to active.

Both phases of this algorithm involve the solution of a sequence of quadratic programming prob-
lems, so that in addition to giving a desirable combination of global and rapid local convergence, they
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also make use of the same software. At each iteration of both phases, a particular subset of discrete
points from [o,B] is identified and the constraints of the quadratic programming problem are defined by
this subset: in the first phase, this remains constant for several iterations, and not all constraints are nor-
mally active; in the second phase, the subset changes at each iteration, and all constraints are usually

active.

Consider Example 4 solved by Algorithm 3 (from the same initial approximation). Table 5 gives
results of the application of the above algorithm applied to the discretized problem. The number k
gives the outer iteration count ( the number of times a discrete solution is obtained on a fixed discrete
subset of the original discrete set), ¢ is the number of quadratic programming subproblems solved at
each outer iteration, |lr,{| is the value reached of the norm on the current discrete set, and |jr]] is the
norm evaluated on all 101 points. The number ! is the number of local maxima added in at each step,
and p denotes the value of p reached on termination. The data input to Algorithm 2 was:

z = {(0.3679780,0.8883755), (—1.988566,~1.988564), (2.630987,1.089790)}.

After 2 iterations, the maximum modulus component of the increment vector was less than 0.00001 and
the solution obtained was
z" = { (0.368115,0.888709), (—1.989059,-1.989059), (2.631323,1.089929)},

t = (0,0.198232,0.587165,%),
A’ =(0.167767,0.332231,0.332236,0.167765),

with [ir’ || = 0.147077 . The total CPU time was 7.98 seconds.

k| q lirell liell ! p

1 | 14 | 0011666 | 0.022209 | 3 | -20-7
2 |4 ] 0014607 | 0014865 [ 2 | -7.1-10
313 | 0014706 4.6 -9

Table §

For approximation problems defined on the whole of the unit circle, it is not uncommon for there

to be a constamt error curve, in other words for the minimum norm value to be attained at all points on

LXY B



-

i

the unit circle. Studies of this phenomenon for polynomial (and rational) approximation have been made
by, for example, Trefethen (1981a,1981b). In this case it is clear that Algorithm 2 will evenwally break
down; on the other hand , for methods of two-phase type, it is easy to identify this situation at the con-
clusion of the first phase.

Example § Let f (w) = 1/(w—2) be approximated by a polynomial of degree 6 on the whole of the unit
circle. The performance of the algorithm of Watson(1988) applied on 100 equispaced points from z = e,
is summarised in Table 6. At the end of the second iteration |jri] = 0.005208 attained at all 100 points,

and the conclusion that the error curve is a constant on the unit circle follows.

k| aq lbry Il I

1 | 10 | 0002905 | 7
2 |5 | 0005208

Table 6

The possibility of this kind of behaviour points the way to another source of difficulty in accu-
rately computing solutions to continuous complex Chebyshev approximation problems: although the
error curve is not constant, it may be close to being constant. This means that identification of the posi-
tions of the points where the norm is attained may be quite difficult, and the positions of the local max-
ima as the computation proceeds will be very sensitive to changes in the coefficient values.

i
2

by i’,z,.(1+w)"i on

j=

{w : w =iy,—20<y<20}. This is an another example of a complex problem which has a solution for

Example 6 Consider the approximation of f(w)= 1/(1+ (w+1)?)

which z is real, and advantage can be taken of this to reduce the size of the computations: in particular
symmetry can be used to restrict consideration to non-negative values of y. In Table 7a is shown the
result of applying the algorithm as before on 51 equispaced points on 0<y<20, taking n = 4 and start-
ing from z=e;. The minimum value of [irfl is 0.016046 aumained at the S points defined by
t = (0.4,0.8,1.6,2.0,20.0)". The points corresponding to local minima of I7; | are 0.0, 1.2 and 3.6 with
values 0.015983, 0.016036 and 0.016039 respectively. Table 7b shows the performance of Algorithm 2
applied from the discrete solution; the continuous problem has just 3 extrema and the seasitivity of the




local maxima to changes in the coefficients is clearly demonstrated. The total CPU time was 7.81

l seconds.
k| q lireli Iiril l
1 | 16 | 0.000891 | 0.086371 | 1
2 (8 0.014233 | 0.024608 | 1
3|4 0.015954 | 0.017687 | 2
413 0.016041 | 0.016078 | 2
5§12 0.016045 | 0.016052 | 1
6 |2 0.016046
Table 7a
k 51 ty i3 8 "r "
1 | 0.871362 | 1.777237 | 20.0 | 0.000102 | 0.016059
2 | 0.334464 | 1.650488 | 20.0 | 0.000034 | 0.016051
3 | 0439621 | 1.610323 | 20.0 | 0.000023 | 0.016049
4 | 0465623 | 1.639444 | 20.0 | 0.000002 | 0.016049
Table 7b

Finally the performance of Algorithm 3 applied to some other examples is summarized in Table

8. The different functions used were

f1(w) = (sinwiw)*,

1
2

faw) = (w-~2+))",

-1
fiw) = (A+w+1)%) 2,

and other information defining the problems being solved is given in the table.




approximations were z = ¢;. The number § gives the maximum modulus component of the increment
vector on termination, p denotes the final value of p, ||r|| is the final value of the norm, and CPU
denotes the CPU time in seconds.

fFw) | ow) | w |a | B |n| &0’ | px10? '] CPU
f1w) | w/ e |0 [2 |4 5 -20 | 0.000281 | 4.02
faw) | wi? e |0 |2 |4 5.0 -4.0 | 0.005028 | 15.36
0 (=16 3 -100 | 0.003863 | 27.71

0 (=8 20 -4.0 | 0.000670 | 85.89

Faw) | Q+w) | e [ O |20 4 2 -3.0 | 0.000281 | 7.1
0 |20 6 6 02 | 0.000140 | 13.70

w+)* it |0 | 20] 6 10 -7.0 | 0.003809 | 19.63

Table 8

4. Concluding remarks

Some numerical methods have been presented for solving complex Chebyshev approximation problems
defined on a contour of the complex plane. It has been assumed that a one-dimensional parameterization
of the contour is available, and this has been exploited to increase efficiency of the methods, although it
is not a limiting factor. Numerical results have been presented to demonstrate the effectiveness of
different approaches for a variety of linear problems, and examples have been used to illustrate various
points. The emphasis has been on the provision of methods which can combine global convergence with
satisfactory rapid local convergence and it seems that this is best achieved within the context of a two-
phase approach: this is characterized by the use of the solution to a discretization of the original prob-
lem (and other information produced) as input to a method with (primarily) good local properties for
satisfying the characterization conditions. Conventional methods of this type do not monitor progress in
the second phase (and in particular are not descent methods), and rely on the input data being
sufficiently good that convergence to a solution of the original problem is achieved without difficulty.




The intention here has been to provide a measure of satisfactory progress in the second phase, so that
(at the expense of additional computation) convergence to the solution can be more reasonably
guaranteed. While the numerical experience is still somewhat limited, it is hoped that the present work
will assist in the quest, and provide a satisfactory framework, for good namerical methods for solving
linear complex Chebyshev approximation problems.

Finally, it is clear that nonlinear problems may be tackled by the methods presented here. The
second phase (in theory) presents no difficulty, and so the main requirement is for a satisfactory method
for solving the discretized problem, and this involves, in particular, deciding how to deal with the Hes-
sian matrix of f. One possibility is to ignore that part of the Hessian matrix which requires second
derivatives of r, (the second term on the right hand side of (4)) leading to a method of Gauss-Newton
type. While this is simple, it is unlikely to be generally effective, and quasi-Newton or finite difference
approximations to the Hessian matrix are more attractive propositions. [t may be that there is little to
be gained by considering altematives to standard methods for nonlinear minimax problems, particularly
if they are tailored to exploit special structure and properties as is done by Yuying Li(1988). This
remains to be investigated and will be the subject of future research.
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A FAST ALGORITHM FOR LINEAR COMPLEX CHEBYSHEV
APPROXIMATION

PING TAK PETER TANG
Argonne National Laboratory

Abstract A natural generalization of the Remez algorithm from real approxin:ation to
complex is presented. The algorithm is the first quadratically convergent of its kind.

Keywords Chebyshev approximation, Remez algorithm, quadratic convergence.

1 Introduction

Given a complex function F analytic on a specified domain in the complex plane, how
can one construct the polynomial, of a prescribed degree, that best approximates F in
the Chebyshev sense? Applications for such an algorithm can be found in (2], [3], [5], (6],
and [8). In the past, complex Chebyshev polynomial approximation has been far less well
understood than its real analogue. In particular, the quadratically convergent Remez
algorithm ({7} and [13]) for real approximation has not been satisfactorily generalized
to a quadratically convergent algorithm for complex approximation. In this praper, we
describe a natural generalization of the real Remez algorithm to complex that converges
quadratically when conditions similar to those for the real case are satisfied.

The organization of this paper is as follows. In Section 2 we formulate our approx-
imation problem in a form that facilitates the generalization. In Section 3, we take a
short digression on the real Remez algorithm before the complex Remez algorithm is
presented. The convergence properties of the algorithm, both global and local, are dis-
cussed in Section 4. Although the assumptions in Section 4 for quadratic convergence
are not met very often in practice, we are able to relax them by an extension of the
algorithm in Section 5. Finally, some concluding remarks are made in Section 6.

2 Formulation

Consider a complex-valued function F analytic in a domain enclosed by a smooth closed
curve in the complex plane. Let v :[0,1] — C, 7(0) = (1), be a smooth parametriza-
tion of that curve, which is the boundary of the domain. Define f, 1, 2,...,¥2m, and




p as follows:
F(@) = f(x(®),
@(t) = Re(y'(t), I=1,2...,n
Pnpi(t) = tlm('y“l(t)), 1=12,...,n
p(A,t) = f:,\,«,p,(t) for any A = [Ay, Az, ..., A2.]T € R?™,
=1

Let || ]| be the Chebyshev norm over [0,1]. Then the complex Chebyshev approximation
problem is to find A* € R and A* € R®" such that

h* = "f - <|f- p(,\,-)|| for all A € R?™.

3 A Complex Remez Algorithm

In this section, we fi.;st revisit the familiar real Remez algorithm and view it as a simplex
algorithm that solves the dual cf the approximation problem. Although that dual is
a semi-infinite linear program, the method of solution needs no discretization or two
different phases, as done in [4] and {10]. Once the real Remez is realized as such, simply
doubling its dimension yields an algorithm for the complex problem.

3.1 The real Remez algcrithm

For the duration of this subsection, assume that f is real and ¥y = 1. Thus F = f and
n(t) = t-1,1 = 1,2,...,n. The approximation problem can be viewed as the following
minimization problem: Determine A* € R and A* € R" 50 as to minimize A, subject to

h2 e (f(1)-p(A1), forall (2,9) € [0,1] x {0,7}.

The dual [9] of the minimization problem is as follows: Determine an irfinite vector
r:TI — [0,1], where T := [0,1] x {0, %}, s0 as to maximize

h= 3" r(t,9)e™* f(t)

(t.9)ez
subject to
Z r(t,9)=1, and
(t,0)el
3 rt.9)eat) =0, 1=1,2,...,n.

(t0)eT

The infinite sum can be justified since the optimum is achievable by a vector r»* with
at most n+1 nonzero entries.
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Given t = [t1,t3,...,tn41]T € [0,1]"*! and 9 = [91,95,...,9001]T € {0,7)}7+,
define two n + 1-vectors and an (» + 1) X (n + 1) matrix as follows:

b := [1,0,0,...,0)7
a(t,9) := [Le pi(t),e (). .., e~ Con()T
A(t, 19) = [a(tl, 01),a(t2, 192), .o ,a(t,.+1, 19,-..;.1 )]

The one-point exchange Remez algorithm for real approximation can be stated as fol-
lows:

Algorithm 1

Step 0 Find an initial ¢ € [0,1]**! and 9 € {0,7}"*! such that A(t,?) is nonsingular
and A-1(t,9)-b > o.

Step 1 Define r(¢,9) := A~!(t,9) - b. From (t,9) determine the unique o := [:]
such that
e (ft) - pAL)) =k i=12.,m4L
Step 2 Determine t’ such that |f(t') ~ p(\, ') = ||f - p(X,-)||. Define

7= [0 IO~ sAL) 20

n otherwise.

Since A < |If — p(A%, W < IF(¥') — p(X, )|}, whenever || f(t') - p(A,t")]| ~ h is
small, h and A are good approximations to the optimal solution and we terminate
the algorithm. Otherwise, we move on.

Step 3 Exchange (t',9') with one of the (t;,9;)’s, j = 1,2,...,n + 1. This exchange
can be determined by solving the following small linear programming problem (via
the simplex algorithm): Determine

r(tla 191)’ T(tg, 1’2)9 ey r(t'H'la "n+1 )7 T(t', 19’) € [0, 1]

80 a8 to maximize the inner product
=1

ntl
" (Z 7ty 93)e% f(tj)) +r(t', 9")e™? f(1)

subject to
[A(t,8) a(t,9)]-r=0b.

The optimal basis of this problem is exactly {(t;,91),(t2,92),...\(tns1,Pn41)}
with one of the elements replaced by (¢/,9’). Rename the new basis as (¢t,9). Go
back to Step 1.
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3.2 The complex Remez algorithm

We are now ready to go back to the complex approximation problem, which can be
stated as the following minimization problem: Determine A* € R and A" € R2?" so as
to minimize A, subject to

h 2 Re(e™ /(1) ~ p(A,1)]), for all (¢,9) € [0,1] x [0, 21].

The dual of the minimization problem is as follows: Determine an infinite vector r -
T - {0,1], where T := [0,1] x [0,27], so as to maximize

h= 3 r(t,9)Re(e (1))

(t.9)eT
subject to
Z r(t,d)=1, and
(t,9)eT
Z r(t, 19)Re(e""¢p;(t)) =0, 1=12,...,2n.

(t.9)eT

The infinite sum can be justified since the optimum is achievable by a vector r* with
at most 2n + 1 nonzero entries.

Given t = [t1,13,...,t2m41]T € [0, 1]™*! and 9 = 1. 92,..., 95041 ]T € (0,2x]n41,
define two 2n + 1-vectors and an (2nr + 1) x (2n + 1) matrix as follows:
b := [1,0,0,...,0]7
a(t,?) [1,Re(e™**21(t)), Re(e™?pa(t)), ..., Re(e™* p3n(t))]T
A(t,‘lg) [a(tl, 191),(1(‘2, ‘02), e ,a(t2n+1, 1’2,.+1 )]

The one-point exchange Remez algorithm for complex approximation is merely a straight-
forward mimic of Algorithm 1.

Algorithm 2

Step O Find aninitial t € [0,1]*"*! and 9 € [0,2x]*"*! such that A(t,9) is nonsingular
and A~'(t,9)-b > o.

Step 1 Define r(t,9) := A~}(t,9)-b. From (t,9) determine the unique o := [h]
such that

Re(e“"[f(t,') -] =h i=1,2...2041

Step 2 Determine t' such that |f(t') — p(A,t')] = ||f -~ p(A,-)||. Define the angle
& = Arg(f(t') — p(A, ). If LF(t) = p(A )| — h is small, h and A are good
approximations to the optimal solution and we terminate the algorithm. Other-
wise, we move on.

Step 3 Exchange (¢/,9’) with one of the (¢;,9,)s, j = 1,2,...,2n + 1 as done in the
previous algorithm for the real case. Go back to Step 1.
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4 Convergence of the Algorithm

The Remez algorithm, whether real or complex, generates a sequence of iterates (k)

(t®),9%)), and o*) = A |- Questions of convergence are naturally centered on the
quantity
m = | £ = p(AR, 9| - ®.

Does n; converge to 0, and, if so, how fast? We answer these questions below in order.

4.1 Global convergence

In the discussion of the real Remez algorithm, [7] shows that g — 0. The proof is a
direct consequence of the fact that rk) > A > 0 for some uniform lower bound A for all
the (%), Such a bound does not exist in general, however, for two (or higher) dimension
real approximation or complex approximation. Nevertheless, similar to the situation in
the simplex algorithm, it is reasonable to assume (¥} > o for all k.

Theorem 1 Ifr*¥) > 0 for k =1,2,3,..., then
liminf nm = 0.
k—oo
Proof A complete proof can be found in [11]. ]

In practice, liminfi_.o, 7% = 0 means that the algorithm terminates in a finite num-
ber of steps for any positive stopping criterion.

4.2 Local convergence

For the real Remez algorithm, it is proved in [7] that the sequence {n:} is majorized by
a sequence {8;}, &x > 7 for all k, that converges to zero quadratically. The standard
assumption ([1},[7], and [i3]) for real approximation is that the optimal f — p has n + 1
extrema (alternations) at which the second derivatives are nonzero. The assumption
and convergence result are generalized to complex approximation in the next theorem.

Theorem 2 Let the function | f(t) — p(A*,t)| have ezactly 2n + 1 eztrema t;*, 1 < j <
2n+1, and let v* := A7'(*,9%)-b > o, where 9;" := Arg(f(t;") - p(A",4;")), 1 < j <
2n 4 1. Furthermore, let the second derivatives with respect to t of | f(t) — p(A*,t) | be

nonzero at each of the 2n + 1 eztrema. Then there ezists a sequence {6;},6x > i for
all k, and two constants M and K such that

Sasr4k S M8, fork > K.
Proof The complete proof is found in [11]. ]

Unfortunately, The proof in [11] is too long to be included here. That length,
however, is mainly due to the fact that the algorithm is a one-point exchange instead
of a multiple-exchange one. In the rest of this section, we first explain why quadratic
convergence is obtainable. Then, we present a multiple exchange version of the Remez
algorithm. Although this version works only when the iterate is close enough to the




optimum, the proof of its quadratic convergence is sufficiently short to be presented
here.
Consider the nonlinear system of equations

Re(e™*% [£(t;) - p(A,t;)]) —
4.1) cVORSCRIN
Im (%5 [£(25) ~ p(M. ;)

Denote the 3(2n+ 1) real parameters by groups of 2n+1 thus = := (o, t,9). Moreoever,
denote the three groups of 2n + 1 lefthand sides by g;(z),j = 1,2,3. Finally, define
G(z) = [97(z),93 (2),93 (=)]. Suppose the assumptions of Theorem 2 are satisfied;
then it is not hard to show that =* := (0*,t*,9") is an isolated zero of Equation 4.1.
Moreover, we can prove the next theorem.

0 j=12,...,2n 41
0 j=12,...,2n 41

it

0 j=12,...,2n 41

Theorem 3 With the assumptions of Theorem 2, the Jacobian J(z*) of G at z* is
invertible.

Proof Partition the Jacobian into 3 x 3 blocks of dimension 2n + 1 each. Because of the
structure of G, the derivatives with respect to ¢t and 9 are all diagonal matrices. More-
over, because t* and 9" are extrema of Re(e~*?[f(t) — p(A",1)]) and |f(t) — p(A",1)|,

t3 )’

Indl

(@)i(z) = (g1)g(z)=0 foralle,
(9)e(=") = ding(Flf(t) = DO, | oo B A ~ (A", 1)

(92)9(=") = diag(—h",—h",...,—h").

Finally, (g,)g (z*) = —AT(¢*,9"). Clearly, the Jacobian at z is block lower triangular
with the diagonal blocks invertible. 1

It is easy to check that the Jacobian is Lipschitz continuous in 2 and thus Newton
iteration would converge quadratically. This approach is not taken in real approxima-
tion, however, because of its high cost since the Newton’s approach is of dimension
2(n + 1) instead of n + 1, the dimension of Remez. The situation is similar in complex
approximation. Indeed, we can show that the following multiple exchange complex Re-
mez algorithm, of dimension 2n + 1, converges as fast as Newton iteration does, which is
of dimension 3(2n + 1). The multiple exchange complex Remez algorithm is Algorithm
2 with Steps 2 and 3 replaced as follows:

Step 2’ Determine t],3,...,%), ,; near t;,13,...,t2041, respectively, such that the first
derivatives of | f(t) — p(X, t)] with respect to ¢ vanish. Define #; as the arguments
of f(t) - (A, 8)).

Step 3’ Replace (t,9) by (t',9').

This algorithm works when (¢, ) is close to the optimum because A~1(¢*,9°)-b > o

implies A~'(¢,9)- b > o whenever (t,9) is close to (t*,9").

Now, to show the equivalent convergence rate of the Newton and Remez iterations,
we consider the updates 2 and (R after one iteration of the Newton and the Remez
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algorithms, respectively, both starting at a common point & very close to the optimum
z*, ||z — *|| < e. We will show that ||=!¥) — 2(R)|| < Me? for some constant M
independent of ¢.

First, the Newton update W) is defined by
(4.2) J(z): (z - M) = G(a).
Next, consider (R}, The vector o(R) is defined by

(91)g (@) - (0 — a®) = g,(=).
Based on o(R), ¢(®) and 9(®) are determined by

92(3(12)) = 93(3(R)) =o.
Thus,

3£ - 42)- 4] - 5 1w

where ||ly|| < M;€? for some M; indepedent of ¢. Thus, (%) can be characterized as

o (91)e(z) (91)9(=)
(4.3) (J(z) - {o ° o }) . (z - :c(R)) =G(z)+vy.

o (1] o

Subtracting Equation 4.3 from Equation 4.2 gives
(4.4) J(z) - (2® —2M)) = ¢

where |z|| < M3e? for some M; independent of e. This is because ||(gy)¢()|, [I(91)9 (=)l
and ||z — 2(R)|| < M;e for some M; independent of €. Finally, J(2*) is invertible, and
thus "J ’l(z)" is uniformly bounded near z* and the proof is complete.

Numerical examples illustrating the convergence behavior can be found in [12] and
f11].

5 An Extension of the Complex Remez Algorithm

In our experience ([11] and {12]), whenever the assumptions in Theorem 2 are not
satisfied, the number of extrema is insufficient. Fortunately, in that case we can extend
the algorithm slightly to restore quadratic convergence. Details of this extension are
presented in [11] and [12]; the idea is roughly as follows. If the number of extrema
is d fewer than the ideal number, one can define a function w : R® — R? whose
zero corresponds to the solution of the original approximation problem. Moreover,
to evaluate the function and its Jacobian, we need only to apply the complex Remez
algorithm to a problem that satisfies all the conditions needed for fast convergence.
Consequently, Newton iteration applied on u is efficient. The quadratic convergence of
this extended algorithm is fully analyzed in [11].




6 Conclusion

We have shown that linear complex Chebyshev approximation can be naturally viewed
as a special case of two-dimensional real approximation for which the Remez exchange
algorithm converges quadratically. We believe such a view can help our understanding

in other aspects of complex approximation such as Chehyshev approximation by rational
functions.
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